Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 19;10(11):3167-3176.
doi: 10.1021/acssynbio.1c00443. Epub 2021 Nov 4.

Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development

Affiliations

Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development

Martina Traykovska et al. ACS Synth Biol. .

Abstract

Due to the steady rise of multidrug-resistant pathogenic bacteria worldwide, it is critical to develop novel antibacterial drugs. This article presents chimeric antisense oligonucleotides that inhibit the bacterial growth of Staphylococcus aureus, one of the most frequent causes of hospital-acquired infections. The chimeric antisense oligonucleotides have a combination of first- and second-generation chemical modification. To deliver the antisense oligonucleotides into a cell, we apply a cell-penetrating oligopeptide attached to them. We have performed complete bioinformatics analyses of the glmS ribozyme present in S. aureus and its essential role in the biochemical pathway of glucosamine-6-phosphate synthesis. Besides, we have analyzed the bacteria for alternative metabolic pathways, such as the nagA gene. The first antisense oligonucleotide explicitly targets the glmS riboswitch, while the second explicitly targets the nagA mRNA. We have evaluated that combined, the antisense oligonucleotides block the synthesis of glucosamine-6-phosphate entirely and inhibit the bacterial growth of S. aureus. However, the glmS riboswitch targeting the antisense oligonucleotide is sufficient to inhibit the growth of S. aureus with a MIC80 of 5 μg/mL. The glmS ribozyme is a very suitable target for antibacterial drug development with antisense oligonucleotides.

Keywords: antibacterial agents; antibacterial drug discovery; antisense oligonucleotides; cell-penetrating peptides; drug target; glmS ribozyme.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources