Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb;51(2):331-343.
doi: 10.1007/s00256-021-03909-2. Epub 2021 Nov 4.

AI MSK clinical applications: cartilage and osteoarthritis

Affiliations
Review

AI MSK clinical applications: cartilage and osteoarthritis

Gabby B Joseph et al. Skeletal Radiol. 2022 Feb.

Abstract

The advancements of artificial intelligence (AI) for osteoarthritis (OA) applications have been rapid in recent years, particularly innovations of deep learning for image classification, lesion detection, cartilage segmentation, and prediction modeling of future knee OA development. This review article focuses on AI applications in OA research, first describing machine learning (ML) techniques and workflow, followed by how these algorithms are used for OA classification tasks through imaging and non-imaging-based ML models. Deep learning applications for OA research, including analysis of both radiographs for automatic detection of OA severity, and MR images for detection of cartilage/meniscus lesions and cartilage segmentation for automatic T2 quantification will be described. In addition, information on ML models that identify individuals at high risk of OA development will be provided. The future vision of machine learning applications in imaging of OA and cartilage hinges on implementation of AI for optimizing imaging protocols, quantitative assessment of cartilage, and automated analysis of disease burden yielding a faster and more efficient workflow for a radiologist with a higher level of reproducibility and precision. It may also provide risk assessment tools for individual patients, which is an integral part of precision medicine.

Keywords: Cartilage; MRI; Machine learning; Osteoarthritis.

PubMed Disclaimer

References

    1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223. - PubMed
    1. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs. 2012;112(3 Suppl 1):S13–9. - PubMed
    1. Weinstein AM, Rome BN, Reichmann WM, Collins JE, Burbine SA, Thornhill TS, et al. Estimating the burden of total knee replacement in the United States. J Bone Joint Surg Am. 2013;95(5):385–92. - PubMed - PMC
    1. Center ME-bP. Total knee replacement. Minneapolis: Agency for Healthcare and Research Quality; 2003.
    1. Ghouri A, Conaghan PG. Update on novel pharmacological therapies for osteoarthritis. Ther Adv Musculoskelet Dis. 2019;11:1759720X19864492. https://doi.org/10.1177/1759720X19864492 .

MeSH terms

LinkOut - more resources