Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 7;84(12).
doi: 10.1088/1361-6633/ac36b9.

The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics

Affiliations
Free article
Review

The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics

Gregor Kasieczka et al. Rep Prog Phys. .
Free article

Abstract

A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.

Keywords: anomaly detection; beyond the standard model; machine learning; model-agnostic methods; semisupervised learning; unsupervised learning; weakly supervised learning.

PubMed Disclaimer

Publication types