Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 21;171(2):215-225.
doi: 10.1093/jb/mvab120.

Multimerization of small G-protein H-Ras induced by chemical modification at hyper variable region with caged compound

Affiliations

Multimerization of small G-protein H-Ras induced by chemical modification at hyper variable region with caged compound

Rufiat Nahar et al. J Biochem. .

Erratum in

  • Erratum.
    [No authors listed] [No authors listed] J Biochem. 2022 Mar 31;171(4):469. doi: 10.1093/jb/mvac016. J Biochem. 2022. PMID: 35181785 Free PMC article. No abstract available.

Abstract

The lipid-anchored small G protein Ras is a central regulator of cellular signal transduction processes, thereby functioning as a molecular switch. Ras forms a nanocluster on the plasma membrane by modifying lipids in the hypervariable region (HVR) at the C-terminus to exhibit physiological functions. In this study, we demonstrated that chemical modification of cysteine residues in HVR with caged compounds (instead of lipidation) induces multimerization of H-Ras. The sulfhydryl-reactive caged compound, 2-nitrobenzyl bromide, was stoichiometrically incorporated into the cysteine residue of HVR and induced the formation of the Ras multimer. Light irradiation induced the elimination of the 2-nitrobenzyl group, resulting in the conversion of the multimer to a monomer. Size-exclusion chromatography coupled with high-performance liquid chromatography and small-angle x-ray scattering analysis revealed that H-Ras forms a pentamer. Electron microscopic observation of the multimer showed a circular ring shape, which is consistent with the structure estimated from x-ray scattering. The shape of the multimer may reflect the physiological state of Ras. It was suggested that the multimerization and monomerization of H-Ras were controlled by modification with a caged compound in HVR under light irradiation.

Keywords: H-Ras; Keywords: caged compound; chemical modification; multimer; small angle x-ray scattering.

PubMed Disclaimer

MeSH terms