Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 15;424(Pt C):127629.
doi: 10.1016/j.jhazmat.2021.127629. Epub 2021 Oct 30.

Polystyrene microplastics induced female reproductive toxicity in mice

Affiliations
Free article

Polystyrene microplastics induced female reproductive toxicity in mice

Zhiqiang Liu et al. J Hazard Mater. .
Free article

Abstract

Plastics have caused serious environmental pollution. In recent years, microplastics (MPs) have caused widespread concern about their potential toxicity on animals and humans, especially on organ and tissue deposition. However, there is little known about the reproductive toxic effects of MPs in female mammals. In this study, the reproductive toxicity of polystyrene MPs (PS-MPs) in female mice was evaluated after continued exposure for 35 days. Results showed that PS-MPs could accumulate in heart, liver, spleen, lung, kidney, brain, large intestine, small intestine, uterus, ovary and blood of exposed mice. Moreover, PS-MPs exposure increased the IL-6 level and decreased malondialdehyde (MDA) level in mouse ovaries. The results also showed that PS-MPs exposure decreased the first polar body extrusion rate and the survival rate of superovulated oocytes. Meanwhile, PS-MPs reduced the level of glutathione (GSH), mitochondrial membrane potential (MMP), endoplasmic reticulum calcium ([Ca2+]ER) and increased reactive oxygen species (ROS) in oocytes. In conclusion, our study illustrated that PS-MPs exposure induced the inflammation of ovaries and reduced the quality of oocytes in mice, which provided a basis for studying the reproductive toxic mechanism of PS-MPs in female mammals.

Keywords: Oocytes; Ovary; PS-MPs; ROS; Reproductive toxicity.

PubMed Disclaimer

LinkOut - more resources