Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 5:351:109737.
doi: 10.1016/j.cbi.2021.109737. Epub 2021 Nov 2.

A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells

Affiliations

A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells

Zhenbang Xiao et al. Chem Biol Interact. .

Abstract

Background: Excessive exposure to Ultraviolet (UV) rays can cause premature skin aging. Ishigoside (IGS) is a new glyceroglycolipid compound isolated from brown algal Ishige okamurae, However, whether it can protect the skin from (Ultraviolet-B) UVB damage has not been illuminated.

Methods: The in vitro anti-photoaging effect of IGS was conducted in UVB-induced HaCaT. The HaCaT cells were divided into the following five groups: (1) cells didn't suffer from UVB irradiation or IGS treatment. (2-5) Cells were treated with various concentrations of IGS (0, 10, 50, and 100 μM) and irradiated by 40 mJ/cm2 UVB. The Matrix metalloproteinase (MMP) of photoaging process was determined by ELISA kits and the latent interaction between IGS and MMP was further performed by molecular docking. The crucial signaling pathway proteins involved in the collagen synthesis and degradation were subsequently evaluated by Western blotting, immunofluorescence and EMSA.

Results: IGS effectively suppresses the high expressions and secretions of matrix metalloproteinases (MMPs) and photo-inflammation by blocking MAPKs, AP-1 and NF-κB. Meanwhile, increasing antioxidant enzyme expression. Molecular docking results suggest that inhibition of IGS on MMPs may be attributed to its hydrogen supply and hydrophobic capacity. In addition, IGS enhanced procollagen production by upregulating the TGF-β/Smad pathways.

Conclusions: IGS exhibited anti-photoaging activity in UVB-damage HaCaT. These effects might be a contribution by its suppression of MMPs expression via MAPKs, AP-1 and NF-κB pathway and have anti-oxidative and anti-inflammatory effects. Therefore, IGS has the great potential to become skin-care products or functional foods for preventing skin photoaging.

Keywords: AP-1; Brown Algae; Ishige okamurae; Ishigoside; MMPs; UVB.

PubMed Disclaimer

MeSH terms

LinkOut - more resources