Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 15:812:151422.
doi: 10.1016/j.scitotenv.2021.151422. Epub 2021 Nov 4.

Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment

Affiliations

Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment

Alessandro G Rombolà et al. Sci Total Environ. .

Abstract

Dissolved organic matter (DOM) is an important organic matter fraction that plays a key role in many biological and chemical processes in soil. The effect of biochar addition on the content and composition of soil organic matter (SOM) and DOM in an agricultural soil in Italy was investigated within a two-year period. UV-Vis spectroscopy and analytical pyrolysis have been applied to study complex components in DOM soil samples. Additionally, analytical pyrolysis was used to provide qualitative information of SOM at molecular level and the properties of biochar before and one year after amendment. A method was developed to quantify biochar levels by thermogravimetric analysis that enabled to identify deviations from the amendment rate. The water-soluble organic carbon (WSOC) concentrations in the amended soils were significantly lower than those in the control soils, indicating that biochar decreased the leaching of DOM. DOM in treated soils was characterized by a higher aromatic character according to analytical pyrolysis and UV-Vis spectroscopy. Moreover, a relatively high abundance of compounds with N was observed in pyrolysates of treated soils, suggesting that biochar increased the proportion of microbial DOM. The results from thermal and spectroscopy techniques are consistent in highlighting significant changes in DOM levels and composition due to biochar application with important effects on soil carbon storage and cycling.

Keywords: Biochar; Dissolved organic carbon; PAH; Py-GC–MS; Soil amendment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources