Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 2;12(39):12911-12917.
doi: 10.1039/d1sc03023j. eCollection 2021 Oct 13.

Biphasic electrochemical peptide synthesis

Affiliations

Biphasic electrochemical peptide synthesis

Shingo Nagahara et al. Chem Sci. .

Abstract

The large amount of waste derived from coupling reagents is a serious drawback of peptide synthesis from a green chemistry viewpoint. To overcome this issue, we report an electrochemical peptide synthesis in a biphasic system. Anodic oxidation of triphenylphosphine (Ph3P) generates a phosphine radical cation, which serves as the coupling reagent to activate carboxylic acids, and produces triphenylphosphine oxide (Ph3P[double bond, length as m-dash]O) as a stoichiometric byproduct. In combination with a soluble tag-assisted liquid-phase peptide synthesis, the selective recovery of desired peptides and Ph3P[double bond, length as m-dash]O was achieved. Given that methods to reduce Ph3P[double bond, length as m-dash]O to Ph3P have been reported, Ph3P[double bond, length as m-dash]O could be a recyclable byproduct unlike byproducts from typical coupling reagents. Moreover, a commercial peptide active pharmaceutical ingredient (API), leuprorelin, was successfully synthesized without the use of traditional coupling reagents.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. (a) Conventional and (b) greener peptide bond formation. (c) Electrochemical peptide bond formation.
Fig. 1
Fig. 1. Electrochemical peptide synthesis utilizing soluble tag-assisted method.
Scheme 2
Scheme 2. (A) Biphasic electrochemical synthesis of leuprorelin, and (B) HPLC analysis of leuprorelin (protected form, R. T. = 28.14) (5).

References

    1. Bryan M. C. Dunn P. J. Entwistle D. Gallou F. Koenig S. G. Hayler J. D. Hickey M. R. Hughes S. Kopach M. E. Moine G. Richardson P. Roschangar F. Steven A. Weiberth F. J. Green Chem. 2018;20:5082–5103. doi: 10.1039/C8GC01276H. - DOI
    2. Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. - DOI - PubMed
    3. de Figueiredo R. M. Suppo J. S. Campagne J. M. Chem. Rev. 2016;116:12029–12122. doi: 10.1021/acs.chemrev.6b00237. - DOI - PubMed
    4. Wang X. Nat. Catal. 2019;2:98–102. doi: 10.1038/s41929-018-0215-1. - DOI
    5. Sabatini M. T. Boulton L. T. Sneddon H. F. Sheppard T. D. Nat. Catal. 2019;2:10–17. doi: 10.1038/s41929-018-0211-5. - DOI
    6. Santos A. S. Silva A. M. S. Marques M. M. B. Eur. J. Org. Chem. 2020:2501–2516. doi: 10.1002/ejoc.202000106. - DOI
    7. Isidro-Llobet A. Kenworthy M. N. Mukherjee S. Kopach M. E. Wegner K. Gallou F. Smith A. G. Roschangar F. J. Org. Chem. 2019;84:4615–4628. doi: 10.1021/acs.joc.8b03001. - DOI - PubMed
    1. Lau J. L. Dunn M. K. Bioorg. Med. Chem. 2018;26:2700–2707. doi: 10.1016/j.bmc.2017.06.052. - DOI - PubMed
    1. El-Faham A. Albericio F. Chem. Rev. 2011;111:6557–6602. doi: 10.1021/cr100048w. - DOI - PubMed
    1. Trost B. M. Science. 1991;254:1471–1477. doi: 10.1126/science.1962206. - DOI - PubMed
    2. Sheldon R. A. Green Chem. 2007;9:1273–1283. doi: 10.1039/B713736M. - DOI
    1. Ishihara K. Ohara S. Yamamoto H. J. Org. Chem. 1996;61:4196–4197. doi: 10.1021/jo9606564. - DOI - PubMed
    2. Al-Zoubi R. M. Marion O. Hall D. G. Angew. Chem., Int. Ed. 2008;47:2876–2879. doi: 10.1002/anie.200705468. - DOI - PubMed
    3. Sabatini M. T. Boulton L. T. Sheppard T. D. Sci. Adv. 2017;3:e1701028. doi: 10.1126/sciadv.1701028. - DOI - PMC - PubMed
    4. Wang K. Lu Y. Ishihara K. Chem. Commun. 2018;54:5410–5413. doi: 10.1039/C8CC02558D. - DOI - PubMed
    5. Noda H. Furutachi M. Asada Y. Shibasaki M. Kumagai N. Nat. Chem. 2017;9:571–577. doi: 10.1038/nchem.2708. - DOI - PubMed
    6. Liu Z. Noda H. Shibasaki M. Kumagai N. Org. Lett. 2018;20:612–615. doi: 10.1021/acs.orglett.7b03735. - DOI - PubMed
    7. Michigami K. Sakaguchi T. Takemoto Y. ACS Catal. 2020;10:683–688. doi: 10.1021/acscatal.9b03894. - DOI
    8. Muramatsu W. Hattori T. Yamamoto H. J. Am. Chem. Soc. 2019;141:12288–12295. doi: 10.1021/jacs.9b03850. - DOI - PubMed
    9. Muramatsu W. Yamamoto H. J. Am. Chem. Soc. 2019;141:18926–18931. doi: 10.1021/jacs.9b08415. - DOI - PubMed