Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 1;9(46):9505-9513.
doi: 10.1039/d1tb01917a.

In situ construction of a nano-structured akermanite coating for promoting bone formation and osseointegration of Ti-6Al-4V implants in a rabbit osteoporosis model

Affiliations

In situ construction of a nano-structured akermanite coating for promoting bone formation and osseointegration of Ti-6Al-4V implants in a rabbit osteoporosis model

Jinjie Cui et al. J Mater Chem B. .

Abstract

With the aging population worldwide, osteoporosis, as an age-related bone metabolic disease, is becoming a hot issue in public health. However, it is still a great challenge to realize osteoporotic bone healing due to the alteration of the bone microenvironment in osteoporosis patients. In this study, a nano-structured akermanite (nAK) coating was in situ constructed on Ti-6Al-4V implants to improve osteoporotic bone repair. In vitro studies indicated that both the surface nano-topography and bioactive ions released from the nAK coatings promoted the proliferation, osteogenesis, angiogenesis and inhibited osteoclastogenesis of ovariectomy rabbit-derived bone marrow mesenchymal stem cells (OVX-rBMSCs). Furthermore, the nAK-coated Ti-6Al-4V implants improved new bone formation and osseointegration in an osteoporosis rabbit model in vivo. These results indicated that the AK coating with a nano-structured surface on the Ti-6Al-4V implant could synergistically promote bone formation and osseointegration for osteoporosis patients. This may be a promising strategy to improve the bone regeneration and osseointegration capability of orthopedic implants under osteoporosis conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources