Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr 10:816:151556.
doi: 10.1016/j.scitotenv.2021.151556. Epub 2021 Nov 6.

Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis

Affiliations
Review

Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis

Li Chen et al. Sci Total Environ. .

Abstract

Soil pollution by potentially toxic trace elements (PTEs) near uranium (U) mines arouses a growing interest worldwide. However, nearly all studies have focused on a single site or only a few sites, which may not fully represent the soil pollution status at the global scale. In this study, data of U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni contents in U mine-associated soils were collected and screened from published articles (2006-2021). Assessments of pollution levels, distributions, ecological, and human health risks of the nine PTEs were analysed. The results revealed that the average contents of the U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni were 39.88-, 55.33-, 0.88-, 3.81-, 3.12-, 3.07-, 9.26-, 1.83-, and 1.17-fold greater than those in the upper continental crust, respectively. The pollution assessment showed that most of the studied soils were heavily polluted by U and Cd. Among them, the U mine-associated soils in France, Portugal, and Bulgaria exhibited significantly higher pollution levels of U and Cd when compared to other regions. The average potential ecological risk value for all PTEs was 3358.83, which indicated the presence of remarkably high risks. Among the PTEs, Cd and U contributed more to the potential ecological risk than the other elements. The health risk assessment showed that oral ingestion was the main exposure route for soil PTEs; and the hazard index (HI) values for children were higher than those for adult males and females. For adult males and females, all hazard index values for the noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of U (HI = 3.56) and As (HI = 1.83), but Cu presented unacceptable carcinogenic risks. This study provides a comprehensive analysis that demonstrates the urgent necessity for treating PTE pollution in U mine-associated soils worldwide.

Keywords: A global scale; Ecological risk; Health risk; Pollution assessment; Potentially toxic trace elements; U mine-associated soils.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

LinkOut - more resources