Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2021 Oct 18;12(10):727-731.
doi: 10.5312/wjo.v12.i10.727.

Mixed reality for visualization of orthopedic surgical anatomy

Affiliations
Editorial

Mixed reality for visualization of orthopedic surgical anatomy

Dimitrios Chytas et al. World J Orthop. .

Abstract

In the modern era, preoperative planning is substantially facilitated by artificial reality technologies, which permit a better understanding of patient anatomy, thus increasing the safety and accuracy of surgical interventions. In the field of orthopedic surgery, the increase in safety and accuracy improves treatment quality and orthopedic patient outcomes. Artificial reality technologies, which include virtual reality (VR), augmented reality (AR), and mixed reality (MR), use digital images obtained from computed tomography or magnetic resonance imaging. VR replaces the user's physical environment with one that is computer generated. AR and MR have been defined as technologies that permit the fusing of the physical with the virtual environment, enabling the user to interact with both physical and virtual objects. MR has been defined as a technology that, in contrast to AR, enables users to visualize the depth and perspective of the virtual models. We aimed to shed light on the role that MR can play in the visualization of orthopedic surgical anatomy. The literature suggests that MR could be a valuable tool in orthopedic surgeon's hands for visualization of the anatomy. However, we remark that confusion exists in the literature concerning the characteristics of MR. Thus, a more clear description of MR is needed in orthopedic research, so that the potential of this technology can be more deeply understood.

Keywords: Anatomy; Artificial reality technologies; Augmented reality; Mixed reality; Orthopedic surgery; Three-dimensional visualization technologies.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare that they have no competing interests

References

    1. Teatini A, Kumar RP, Elle OJ, Wiig O. Mixed reality as a novel tool for diagnostic and surgical navigation in orthopaedics. Int J Comput Assist Radiol Surg. 2021;16:407–414. - PMC - PubMed
    1. Brigham TJ. Reality Check: Basics of Augmented, Virtual, and Mixed Reality. Med Ref Serv Q. 2017;36:171–178. - PubMed
    1. Moro C, Štromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10:549–559. - PubMed
    1. Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21:133–145. - PMC - PubMed
    1. Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot. 2020;16:e2067. - PubMed

Publication types