Impact of lung structure on airway opening index during mechanical versus manual chest compressions in a porcine model of cardiac arrest
- PMID: 34757207
- DOI: 10.1016/j.resp.2021.103807
Impact of lung structure on airway opening index during mechanical versus manual chest compressions in a porcine model of cardiac arrest
Abstract
Objectives: The exhaled CO2 signal provides guidance during cardiopulmonary resuscitation. The Airway opening index (AOI) has been recently used to quantify chest-compression (CC) induced expired CO2 oscillations. We aimed to determine whether levels of intrathoracic pressures developed during CC or parameters related to lung structure may affect AOI.
Methods: Secondary analysis of a randomized animal study (n = 12) in a porcine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) during ambulance transport. Animals were randomized to 18-min of manual or mechanical CCs. Changes in AOI and right atrial pressure (ΔRAP) were recorded during CCs in animals undergoing manual (n = 6) or mechanical (n = 6) CCs. Lung CT scan and measurement of the respiratory system compliance (Cpl,rs) were performed immediately after return of spontaneous circulation.
Results: Animals undergoing mechanical CCs had a lower AOI compared to animals treated with manual CCs (p < 0.001). AOI negatively correlated with the swings of intrathoracic pressure, as measured by the change in ΔRAP (ρ=-0.727, p = 0.007). AOI correlated with the lung density (ρ=-0.818, p = 0.001) and with the Cpl,rs (ρ = 0.676, p = 0.016). Animals with cardiopulmonary resuscitation associated lung edema (CRALE) (i.e. mean CT≥-500 HU) showed lower levels of AOI compared to animals without it (29 ± 12 % versus 50 ± 16 %, p = 0.025).
Conclusions: Animals undergoing mechanical CCs had lower levels of AOI compared to animals undergoing manual CCs. A higher swing of intrathoracic pressure during CC, a denser and a stiffer lung were associated with an impaired CO2 exhalation during CC as observed by a lower AOI.
Keywords: Airway opening index; Carbon dioxide; Cardiac arrest; Cardiopulmonary resuscitation; Chest compression; Computed tomography; Intrathoracic pressure.
Copyright © 2021 Elsevier B.V. All rights reserved.
MeSH terms
LinkOut - more resources
Medical