Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb:296:103807.
doi: 10.1016/j.resp.2021.103807. Epub 2021 Oct 29.

Impact of lung structure on airway opening index during mechanical versus manual chest compressions in a porcine model of cardiac arrest

Affiliations

Impact of lung structure on airway opening index during mechanical versus manual chest compressions in a porcine model of cardiac arrest

Emanuele Rezoagli et al. Respir Physiol Neurobiol. 2022 Feb.

Abstract

Objectives: The exhaled CO2 signal provides guidance during cardiopulmonary resuscitation. The Airway opening index (AOI) has been recently used to quantify chest-compression (CC) induced expired CO2 oscillations. We aimed to determine whether levels of intrathoracic pressures developed during CC or parameters related to lung structure may affect AOI.

Methods: Secondary analysis of a randomized animal study (n = 12) in a porcine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) during ambulance transport. Animals were randomized to 18-min of manual or mechanical CCs. Changes in AOI and right atrial pressure (ΔRAP) were recorded during CCs in animals undergoing manual (n = 6) or mechanical (n = 6) CCs. Lung CT scan and measurement of the respiratory system compliance (Cpl,rs) were performed immediately after return of spontaneous circulation.

Results: Animals undergoing mechanical CCs had a lower AOI compared to animals treated with manual CCs (p < 0.001). AOI negatively correlated with the swings of intrathoracic pressure, as measured by the change in ΔRAP (ρ=-0.727, p = 0.007). AOI correlated with the lung density (ρ=-0.818, p = 0.001) and with the Cpl,rs (ρ = 0.676, p = 0.016). Animals with cardiopulmonary resuscitation associated lung edema (CRALE) (i.e. mean CT≥-500 HU) showed lower levels of AOI compared to animals without it (29 ± 12 % versus 50 ± 16 %, p = 0.025).

Conclusions: Animals undergoing mechanical CCs had lower levels of AOI compared to animals undergoing manual CCs. A higher swing of intrathoracic pressure during CC, a denser and a stiffer lung were associated with an impaired CO2 exhalation during CC as observed by a lower AOI.

Keywords: Airway opening index; Carbon dioxide; Cardiac arrest; Cardiopulmonary resuscitation; Chest compression; Computed tomography; Intrathoracic pressure.

PubMed Disclaimer

LinkOut - more resources