Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 30;12(42):14024-14032.
doi: 10.1039/d1sc04230k. eCollection 2021 Nov 3.

Synthesis, structure and bonding nature of heavy dipnictene radical anions

Affiliations

Synthesis, structure and bonding nature of heavy dipnictene radical anions

Hanns M Weinert et al. Chem Sci. .

Abstract

Cyclic voltammetry (CV) studies of two L(X)Ga-substituted dipnictenes [L(R2N)GaE]2 (E = Sb, R = Me 1; E = Bi; R = Et 2; L = HC[C(Me)NDipp]2; Dipp = 2,6-i-Pr2C6H3) showed reversible reduction events. Single electron reduction of 1 and 2 with KC8 in DME in the presence of benzo-18-crown-6 (B-18-C-6) gave the corresponding dipnictenyl radical anions (DME)[K(B-18-C-6)][L(R2N)GaE]2 (E = Sb, R = Me 3; E = Bi, R = Et 4). Radical anions 3 and 4 were characterized by EPR, UV-vis and single crystal X-ray diffraction, while quantum chemical calculations gave deeper insight into the nature of the chemical bonding.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Structurally characterized heavy dipnictene radical cations and anions (E = As, Sb, Bi).
Fig. 1
Fig. 1. CV curves of saturated solutions of 1 and 2 in THF with [n-Bu4N][PF6] (100 mM) as electrolyte. Experiments were performed at 45 °C due to the low solubility of 1 and 2.
Scheme 2
Scheme 2. Synthesis of dipnictene radical anions 3 and 4 by reduction of dipnictenes 1 and 2; Ar = Dipp.
Fig. 2
Fig. 2. UV-vis spectra of dipnictenes 1 and 2 in benzene and dipnictene radical anions 3 and 4 in THF solution. To illustrate the colour change, pictures of solutions of 10 mg of 1 and 2 before and after addition of one equivalent of KC8 in NMR tubes are depicted.
Fig. 3
Fig. 3. Molecular structure of 3 in the crystal. H-atoms and solvent molecules are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 4
Fig. 4. Molecular structure of 4 in the crystal. H-atoms and minor part of the disorder are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 5
Fig. 5. Continuous-wave EPR spectra of 3 (a) as solution in THF collected at X-band frequency (∼9.43 GHz) and (b) as frozen solution (77 K) collected at X-band frequency (∼9.45 GHz) in black with simulated spectrum in red. The asterisk indicates a small organic radical impurity. The frozen solution EPR (b) shows a broad signal with broad hyperfine features, due to the coupling of the unpaired electron with two Sb atoms, each of which possess NMR-active nucleotides (121Sb 57.21%, I = 5/2; 123Sb 42.79%, I = 7/2). EPR simulation parameters: g = [2.401, 2.051, 2.000], 2 × A(121Sb) = [120, 200, 560] MHz, lw (linewidth, peak-to-peak) = 13 mT; spectrometer conditions are described in the Experimental section.
Fig. 6
Fig. 6. (left) LUMO of [L(Me2N)GaSb]21 (isovalue 0.05). (right) Spin density of (DME)[K(B-18-C-6)][L(Me2N)GaSb]23.
Fig. 7
Fig. 7. (left) LUMO of [L(Et2N)GaBi]22 (isovalue 0.05). (right) Spin density of (DME)[K(B-18-C-6)][L(Et2N)GaBi]24.

References

    1. Fischer R. C. Power P. P. Chem. Rev. 2010;110:3877–3923. doi: 10.1021/cr100133q. - DOI - PubMed
    2. Yadav S. Saha S. Sen S. S. ChemCatChem. 2016;8:486–501. doi: 10.1002/cctc.201501015. - DOI
    3. Schulz S. Chem.–Eur. J. 2010;16:6416–6428. doi: 10.1002/chem.201000580. - DOI - PubMed
    1. Yoshifuji M. Shima I. Inamoto N. Hirotsu K. Higuchi T. J. Am. Chem. Soc. 1981;103:4587–4589. doi: 10.1021/ja00405a054. - DOI
    1. West R. Fink M. J. Michl J. Science. 1981;214:1343–1344. doi: 10.1126/science.214.4527.1343. - DOI - PubMed
    1. Sharma M. K. Blomeyer S. Neumann B. Stammler H. G. Ghadwal R. S. Chem.–Eur. J. 2019;25:8249–8253. doi: 10.1002/chem.201901857. - DOI - PubMed
    2. Majhi P. K. Ikeda H. Sasamori T. Tsurugi H. Mashima K. Tokitoh N. Organometallics. 2017;36:1224–1226. doi: 10.1021/acs.organomet.7b00147. - DOI
    3. Sasamori T. Tokitoh N. Dalton Trans. 2008:1395–1408. doi: 10.1039/B715033D. - DOI - PubMed
    4. Sasamori T. Arai Y. Takeda N. Okazaki R. Furukawa Y. Kimura M. Nagase S. Tokitoh N. Bull. Chem. Soc. Jpn. 2002;75:661–675. doi: 10.1246/bcsj.75.661. - DOI
    5. Twamley B. Sofield C. D. Olmstead M. M. Power P. P. J. Am. Chem. Soc. 1999;121:3357–3367. doi: 10.1021/ja983999n. - DOI
    6. Tokitoh N. Arai Y. Sasamori T. Okazaki R. Nagase S. Uekusa H. Ohashi Y. J. Am. Chem. Soc. 1998;120:433–434. doi: 10.1021/ja973295y. - DOI
    7. Tokitoh N. Arai Y. Okazaki R. Nagase S. Science. 1997;277:78–80. doi: 10.1126/science.277.5322.78. - DOI
    1. Schwamm R. Coles M. P. Chem.–Eur. J. 2019;25:14183–14191. doi: 10.1002/chem.201903175. - DOI - PubMed