Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 10:816:151567.
doi: 10.1016/j.scitotenv.2021.151567. Epub 2021 Nov 8.

Mineral characterization and composition of Fe-rich flocs from wetlands of Iceland: Implications for Fe, C and trace element export

Affiliations
Free article

Mineral characterization and composition of Fe-rich flocs from wetlands of Iceland: Implications for Fe, C and trace element export

Laurel K ThomasArrigo et al. Sci Total Environ. .
Free article

Abstract

In freshwater wetlands, redox interfaces characterized by circumneutral pH, steep gradients in O2, and a continual supply of Fe(II) form ecological niches favorable to microaerophilic iron(II) oxidizing bacteria (FeOB) and the formation of flocs; associations of (a)biotic mineral phases, microorganisms, and (microbially-derived) organic matter. On the volcanic island of Iceland, wetlands are replenished with Fe-rich surface-, ground- and springwater. Combined with extensive drainage of lowland wetlands, which forms artificial redox gradients, accumulations of bright orange (a)biotically-derived Fe-rich flocs are common features of Icelandic wetlands. These loosely consolidated flocs are easily mobilized, and, considering the proximity of Iceland's lowland wetlands to the coast, are likely to contribute to the suspended sediment load transported to coastal waters. To date, however, little is known regarding (Fe) mineral and elemental composition of the flocs. In this study, flocs from wetlands (n = 16) across Iceland were analyzed using X-ray diffraction and spectroscopic techniques (X-ray absorption and 57Fe Mössbauer) combined with chemical extractions and (electron) microscopy to comprehensively characterize floc mineral, elemental, and structural composition. All flocs were rich in Fe (229-414 mg/g), and floc Fe minerals comprised primarily ferrihydrite and nano-crystalline lepidocrocite, with a single floc sample containing nano-crystalline goethite. Floc mineralogy also included Fe in clay minerals and appreciable poorly-crystalline aluminosilicates, most likely allophane and/or imogolite. Microscopy images revealed that floc (bio)organics largely comprised mineral encrusted microbially-derived components (i.e. sheaths, stalks, and EPS) indicative of common FeOB Leptothrix spp. and Gallionella spp. Trace element contents in the flocs were in the low μg/g range, however nearly all trace elements were extracted with hydroxylamine hydrochloride. This finding suggests that the (a)biotic reductive dissolution of floc Fe minerals, plausibly driven by exposure to the varied geochemical conditions of coastal waters following floc mobilization, could lead to the release of associated trace elements. Thus, the flocs should be considered vectors for transport of Fe, organic carbon, and trace elements from Icelandic wetlands to coastal waters.

Keywords: (57)Fe Mössbauer; Biominerals; EXAFS; Fe(II)-oxidizing bacteria; Freshwater flocs; Wetlands.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources