Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 12;22(1):816.
doi: 10.1186/s12864-021-08105-z.

Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmFC genes

Affiliations

Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmFC genes

Benjamin M Anderson et al. BMC Genomics. .

Abstract

Background: The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus.

Results: The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT.

Conclusions: The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences.

Keywords: Chloroplast; Dodder; Intracellular transfer; Mitogenome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Linear representations of mitogenomes of Cuscuta australis and C. campestris. The assembly of C. australis consists of eight contigs (divided by gaps), while that of C. campestris is represented as a single circle. Pseudogenes are indicated with a capital psi (Ψ). Fragmented genes have “_frag” at the end of their labels. Transcription is to the right above the lines, and to the left below the lines
Fig. 2
Fig. 2
Schematic of ccmFC gene structure in Cuscuta australis and its close relative Ipomoea nil compared to typical structure in angiosperms. Transcriptomic reads from both species are mapped to three DNA sequences with high similarity to ccmFC from Cuscuta australis and three from Ipomoea nil. Red lines indicate mismatches in the mapped RNA reads and correspond to putative RNA editing sites. Light grey lines connect read pairs, while solid black lines indicate a break in a single read. Group II intron domains are denoted with Roman numerals. *The third domain in Cuscuta may not fold properly given its sequence divergence
Fig. 3
Fig. 3
Maximum likelihood cladogram based on concatenation of all known mitochondrial genes present in Cuscuta together with representatives from angiosperm orders with fully assembled mitogenomes. Orders are indicated at the right along with the outgroup gymnosperms, and the location of Cuscuta is highlighted in yellow. Bootstrap support of 60% or greater is shown above branches. The sequence for Bupleurum falcatum (NC_035962.1) is likely misidentified

References

    1. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001;55:709–742. - PMC - PubMed
    1. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9:605–618. - PubMed
    1. Dunning LT, Olofsson JK, Parisod C, Choudhury RR, Moreno-Villena JJ, Yang Y, et al. Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci U S A. 2019;116:4416–4425. - PMC - PubMed
    1. Yang Z, Wafula EK, Kim G, Shahid S, McNeal JR, Ralph PE, et al. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nat Plants. 2019. 10.1038/s41477-019-0458-0. - PubMed
    1. Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts. Science. 2009;324:649–651. - PubMed

LinkOut - more resources