RNA in formation and regulation of transcriptional condensates
- PMID: 34772787
- PMCID: PMC8675292
- DOI: 10.1261/rna.078997.121
RNA in formation and regulation of transcriptional condensates
Abstract
Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.
Keywords: RNA; condensate; intrinsically disordered domains; phase separation; transcription; transcription factors.
© 2022 Sharp et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Figures



Similar articles
-
What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?RNA. 2022 Jan;28(1):36-47. doi: 10.1261/rna.079026.121. Epub 2021 Nov 12. RNA. 2022. PMID: 34772786 Free PMC article. Review.
-
Using quantitative reconstitution to investigate multicomponent condensates.RNA. 2022 Jan;28(1):27-35. doi: 10.1261/rna.079008.121. Epub 2021 Nov 12. RNA. 2022. PMID: 34772789 Free PMC article. Review.
-
Weak multivalent biomolecular interactions: a strength versus numbers tug of war with implications for phase partitioning.RNA. 2022 Jan;28(1):48-51. doi: 10.1261/rna.079004.121. Epub 2021 Nov 12. RNA. 2022. PMID: 34772790 Free PMC article. Review.
-
Composition-dependent thermodynamics of intracellular phase separation.Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6. Nature. 2020. PMID: 32405004 Free PMC article.
-
Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates.Biochemistry (Mosc). 2024 Apr;89(4):688-700. doi: 10.1134/S0006297924040084. Biochemistry (Mosc). 2024. PMID: 38831505 Review.
Cited by
-
Biomolecular condensates in kidney physiology and disease.Nat Rev Nephrol. 2023 Dec;19(12):756-770. doi: 10.1038/s41581-023-00767-0. Epub 2023 Sep 26. Nat Rev Nephrol. 2023. PMID: 37752323 Review.
-
Disrupting pathologic phase transitions in neurodegeneration.J Clin Invest. 2023 Jul 3;133(13):e168549. doi: 10.1172/JCI168549. J Clin Invest. 2023. PMID: 37395272 Free PMC article. Review.
-
Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation.Nat Commun. 2025 Feb 14;16(1):1640. doi: 10.1038/s41467-025-56735-8. Nat Commun. 2025. PMID: 39952932 Free PMC article.
-
Selective phase separation of transcription factors is driven by orthogonal molecular grammar.Nat Commun. 2025 Mar 31;16(1):3087. doi: 10.1038/s41467-025-58445-7. Nat Commun. 2025. PMID: 40164612 Free PMC article.
-
Phase separation in gene transcription control.Acta Biochim Biophys Sin (Shanghai). 2023 Jun 1;55(7):1052-1063. doi: 10.3724/abbs.2023099. Acta Biochim Biophys Sin (Shanghai). 2023. PMID: 37265348 Free PMC article. Review.
References
-
- Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Lindt JV, Larabell C, Bosch LVD, Das R, Tompa PS, Pappu RV, et al. 2019. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc Natl Acad Sci 116: 7889–7898. 10.1073/pnas.1821038116 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources