Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae
- PMID: 34772804
- PMCID: PMC8694050
- DOI: 10.1073/pnas.2025670118
Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae
Abstract
Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species Pleurochrysis carterae using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.
Keywords: biomineralization; coccolith; cryoelectron tomography; crystallization; ocean acidification.
Conflict of interest statement
The authors declare no competing interest.
Figures





Similar articles
-
The variability in the structural and functional properties of coccolith base plates.Acta Biomater. 2022 Aug;148:336-344. doi: 10.1016/j.actbio.2022.06.027. Epub 2022 Jun 20. Acta Biomater. 2022. PMID: 35738389
-
Macromolecular recognition directs calcium ions to coccolith mineralization sites.Science. 2016 Aug 5;353(6299):590-3. doi: 10.1126/science.aaf7889. Science. 2016. PMID: 27493186
-
Lattice distortions in coccolith calcite crystals originate from occlusion of biomacromolecules.J Struct Biol. 2016 Nov;196(2):147-154. doi: 10.1016/j.jsb.2016.09.010. Epub 2016 Sep 16. J Struct Biol. 2016. PMID: 27645701
-
Coccolith crystals: Pure calcite or organic-mineral composite structures?Acta Biomater. 2021 Apr 15;125:83-89. doi: 10.1016/j.actbio.2021.02.025. Epub 2021 Feb 22. Acta Biomater. 2021. PMID: 33631395 Review.
-
Biomineralization in coccolithophores.Gravit Space Biol Bull. 1999 May;12(2):5-14. Gravit Space Biol Bull. 1999. PMID: 11541783 Review.
Cited by
-
Nannochloropsis oceanica IMET1 and its bacterial symbionts for carbon capture, utilization, and storage: biomass and calcium carbonate production under high pH and high alkalinity.Appl Environ Microbiol. 2025 May 21;91(5):e0013325. doi: 10.1128/aem.00133-25. Epub 2025 Apr 17. Appl Environ Microbiol. 2025. PMID: 40243321 Free PMC article.
-
Biomineralization: Integrating mechanism and evolutionary history.Sci Adv. 2022 Mar 11;8(10):eabl9653. doi: 10.1126/sciadv.abl9653. Epub 2022 Mar 9. Sci Adv. 2022. PMID: 35263127 Free PMC article. Review.
-
Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature.Nat Commun. 2024 Sep 10;15(1):7888. doi: 10.1038/s41467-024-52211-x. Nat Commun. 2024. PMID: 39251596 Free PMC article.
-
A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores.Nat Commun. 2023 Jun 23;14(1):3749. doi: 10.1038/s41467-023-39336-1. Nat Commun. 2023. PMID: 37353496 Free PMC article.
-
Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate.J Am Chem Soc. 2021 Dec 22;143(50):21100-21112. doi: 10.1021/jacs.1c09174. Epub 2021 Dec 9. J Am Chem Soc. 2021. PMID: 34881565 Free PMC article.
References
-
- Young J. R., Henriksen K., Biomineralization within vesicles: The calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215 (2003).
-
- Taylor A. R., Brownlee C., Wheeler G., Coccolithophore cell biology: Chalking up progress. Annu. Rev. Mar. Sci. 9, 283–310 (2017). - PubMed
-
- Mejía L. M., et al. ., Controls over δ44/40Ca and Sr/Ca variations in coccoliths: New perspectives from laboratory cultures and cellular models. Earth Planet. Sci. Lett. 481, 48–60 (2018).
-
- Meyer J., Riebesell U., Reviews and syntheses: Responses of coccolithophores to ocean acidification: A meta-analysis. Biogeosciences 12, 1671–1682 (2015).
-
- Marsh M. E., Chang D. K., King G. C., Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. J. Biol. Chem. 267, 20507–20512 (1992). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous