Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar;204(Pt D):112373.
doi: 10.1016/j.envres.2021.112373. Epub 2021 Nov 10.

Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review

Affiliations
Review

Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review

Hanlin Cui et al. Environ Res. 2022 Mar.

Abstract

Nanoparticles (NPs) and antibiotic resistance elements are ubiquitous in wastewater and consequently, in receiving environments. Sub-lethal levels of engineered NPs potentially result in a selective pressure on antibiotic resistance gene (ARG) propagation in wastewater treatment plants. Conversely, emergent NPs are being designed to naturally attenuate ARGs based on special physical and electrochemical properties, which could alleviate dissemination of ARGs to the environment. The complex interactions between NPs and antibiotic resistance elements have heightened interest in elucidating the potential positive and negative implications. This review focuses on the properties of NPs and ARGs and how their interactions could increase or decrease antibiotic resistance at wastewater treatment plants and in receiving environments. Further, the potential for sub-lethal level NPs to facilitate horizontal gene transfer of ARGs and increase mutagenesis rates, which adds a layer of complexity to combatting antibiotic resistance associated with wastewater management, is discussed. Notably, the literature revealed that sub-lethal exposure of engineered NPs may facilitate conjugative transfer of ARGs by increasing cell membrane permeability. The enhanced permeability is a result of direct damage via NP attachment and indirect damage by generating reactive oxygen species (ROS) and causing genetic changes relevant to conjugation. Finally, current knowledge gaps and future research directions (e.g., deciphering the fate of NPs in the environment and examining the long-term cytotoxicity of NPs) are identified for this emerging field.

Keywords: Antibiotic resistance genes; Horizontal gene transfer; Metal ions; Metal nanoparticles; Nanotechnology; Wastewater.

PubMed Disclaimer

LinkOut - more resources