Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb:158:118-131.
doi: 10.1016/j.wneu.2021.11.027. Epub 2021 Nov 11.

Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions

Affiliations
Free article
Review

Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions

Teodor Svedung Wettervik et al. World Neurosurg. 2022 Feb.
Free article

Abstract

The role of cerebral pressure autoregulation (CPA) in brain injury and disorders has gained increased interest. The CPA is often disturbed as a consequence of acute brain injury, which contributes to further brain damage and worse outcome. Specifically, in severe traumatic brain injury, CPA disturbances predict worse clinical outcome and targeting an autoregulatory-oriented optimal cerebral perfusion pressure threshold may improve brain energy metabolism and clinical outcome. In aneurysmal subarachnoid hemorrhage, cerebral vasospasm in combination with distal autoregulatory disturbances precipitate delayed cerebral ischemia. The role of optimal cerebral perfusion pressure targets is less clear in aneurysmal subarachnoid hemorrhage, but high cerebral perfusion pressure targets are generally favorable in the vasospasm phase. In acute ischemia, autoregulatory disturbances may occur and autoregulatory-oriented blood pressure (optimal mean arterial pressure) management reduces the risk of hemorrhagic transformation, brain edema, and unfavorable outcome. In chronic occlusive disease such as moyamoya, the gradual reduction of the cerebral circulation leads to compensatory distal vasodilation and the residual CPA capacity predicts the risk for cerebral ischemia. In spontaneous intracerebral hemorrhage, the role of autoregulatory disturbances is less clear, but CPA disturbances correlate with worse clinical outcome. Also, in community-acquired bacterial meningitis, CPA dysfunction is frequent and correlates with worse clinical outcome, but autoregulatory management is yet to be evaluated. In this review, we discuss the role of CPA in different types of brain injury and disease, the strengths and limitations of the monitoring methods, the potentials of autoregulatory management, and future directions in the field.

Keywords: Cerebral pressure autoregulation; Intracerebral hemorrhage; Meningitis; Stroke; Subarachnoid hemorrhage; Traumatic brain injury.

PubMed Disclaimer

Publication types

LinkOut - more resources