Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 15;12(40):13442-13449.
doi: 10.1039/d1sc03476f. eCollection 2021 Oct 20.

Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes

Affiliations

Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes

Kuppan Ramachandran et al. Chem Sci. .

Abstract

Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Transition metal-catalyzed C–H bond allylation and reaction of cyclopropenes.
Scheme 2
Scheme 2. Cp*Co(iii)-catalysed multisubstituted allylation of chelation-assisted C–H bonds with cyclopropenes. From the corresponding allyl ether. Ratio of stereoisomers.
Scheme 3
Scheme 3. Reaction of 2a with N-pyridylpyrrole 4 and N-arylpyrazole 5.
Scheme 4
Scheme 4. Synthetic utility. (a) Gram scale reaction. (b) Removal of directing group. (c) Synthesis of cyclopenta[b]indoles. (d) One-pot synthesis of cyclopenta[b]indole.
Scheme 5
Scheme 5. Preliminary mechanistic investigation. (a) Competitive experiment. (b) Deuterium exchange experiment. (c) Stoichiometric reaction.
Scheme 6
Scheme 6. Plausible mechanism.

Similar articles

Cited by

References

    1. Sohn H. Y. Son K. H. Kwon C. S. Kwon G. S. Kang S. S. Phytomedicine. 2004;11:666–672. doi: 10.1016/j.phymed.2003.09.005. - DOI - PubMed
    2. Du J. He Z.-D. Jiang R.-W. Ye W.-C. Xu H.-X. But P. P.-H. Phytochemistry. 2003;62:1235–1238. doi: 10.1016/S0031-9422(02)00753-7. - DOI - PubMed
    3. Ni G. Zhang Q.-J. Zheng Z.-F. Chen R.-Y. Yu D.-Q. J. Nat. Prod. 2009;72:966–968. doi: 10.1021/np800789y. - DOI - PubMed
    1. Roberts R. M. and Khalaf A. A., Friedel–Crafts Alkylation Chemistry: A Century of Discovery, M. Dekker, 1984
    2. Niggemann M. Meel M. J. Angew. Chem., Int. Ed. 2010;49:3684–3687. doi: 10.1002/anie.200907227. - DOI - PubMed
    1. Kiyotsuka Y. Acharya H. P. Katayama Y. Hyodo T. Kobayashi Y. Org. Lett. 2008;10:1719–1722. doi: 10.1021/ol800300x. - DOI - PubMed
    2. Spino C. Tremblay M.-C. Gobdout C. Org. Lett. 2004;6:2801–2804. doi: 10.1021/ol048936q. - DOI - PubMed
    3. Harrington-Frost N. Leuser H. Calaza M. I. Kneisel F. F. Knochel P. Org. Lett. 2003;5:2111–2114. doi: 10.1021/ol034525i. - DOI - PubMed
    1. Mishra N. K. Sharma S. Park J. Han S. Kim I. S. ACS Catal. 2017:2821–2847. doi: 10.1021/acscatal.7b00159. - DOI
    2. Dutta S. Bhattacharya T. Werz D. B. Maiti D. Chem. 2021;7:555–605. doi: 10.1016/j.chempr.2020.10.020. - DOI
    1. Lee S. Y. Hartwig J. F. J. Am. Chem. Soc. 2016;138:15278–15284. doi: 10.1021/jacs.6b10220. - DOI - PMC - PubMed
    2. Bae S. Jang H.-L. Jung H. Joo J. M. J. Org. Chem. 2015;80:690–697. doi: 10.1021/jo5025317. - DOI - PubMed
    3. Fan S. Chen F. Zhang X. Angew. Chem., Int. Ed. 2011;50:5918–5923. doi: 10.1002/anie.201008174. - DOI - PubMed
    4. Achar T. K. Zhang X. Mondal R. Shanavas M. S. Maiti S. Maity S. Pal N. Paton R. S. Maiti D. Angew. Chem., Int. Ed. 2019;58:10353–10360. doi: 10.1002/anie.201904608. - DOI - PubMed