Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose
- PMID: 34777910
- PMCID: PMC8576811
- DOI: 10.1021/acscatal.1c03465
Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose
Abstract
Biological deconstruction of polymer materials gains efficiency from the spatiotemporally coordinated action of enzymes with synergetic function in polymer chain depolymerization. To perpetuate enzyme synergy on a solid substrate undergoing deconstruction, the overall attack must alternate between focusing the individual enzymes locally and dissipating them again to other surface sites. Natural cellulases working as multienzyme complexes assembled on a scaffold protein (the cellulosome) maximize the effect of local concentration yet restrain the dispersion of individual enzymes. Here, with evidence from real-time atomic force microscopy to track nanoscale deconstruction of single cellulose fibers, we show that the cellulosome forces the fiber degradation into the transversal direction, to produce smaller fragments from multiple local attacks ("cuts"). Noncomplexed enzymes, as in fungal cellulases or obtained by dissociating the cellulosome, release the confining force so that fiber degradation proceeds laterally, observed as directed ablation of surface fibrils and leading to whole fiber "thinning". Processive cellulases that are enabled to freely disperse evoke the lateral degradation and determine its efficiency. Our results suggest that among natural cellulases, the dispersed enzymes are more generally and globally effective in depolymerization, while the cellulosome represents a specialized, fiber-fragmenting machinery.
© 2021 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Enzyme Synergy in Transient Clusters of Endo- and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose.ACS Catal. 2022 Sep 2;12(17):10984-10994. doi: 10.1021/acscatal.2c02377. Epub 2022 Aug 24. ACS Catal. 2022. PMID: 36082050 Free PMC article.
-
A Biological Nanomachine at Work: Watching the Cellulosome Degrade Crystalline Cellulose.ACS Cent Sci. 2020 May 27;6(5):739-746. doi: 10.1021/acscentsci.0c00050. Epub 2020 May 6. ACS Cent Sci. 2020. PMID: 32490190 Free PMC article.
-
Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability.Biotechnol Biofuels. 2016 Aug 4;9:164. doi: 10.1186/s13068-016-0577-z. eCollection 2016. Biotechnol Biofuels. 2016. PMID: 27493686 Free PMC article.
-
The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity.Chem Rec. 2001;1(1):24-32. doi: 10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W. Chem Rec. 2001. PMID: 11893054 Review.
-
Cellulose, cellulases and cellulosomes.Curr Opin Struct Biol. 1998 Oct;8(5):548-57. doi: 10.1016/s0959-440x(98)80143-7. Curr Opin Struct Biol. 1998. PMID: 9818257 Review.
Cited by
-
Synergy of Cellulase Systems between Acetivibrio thermocellus and Thermoclostridium stercorarium in Consolidated-Bioprocessing for Cellulosic Ethanol.Microorganisms. 2022 Feb 24;10(3):502. doi: 10.3390/microorganisms10030502. Microorganisms. 2022. PMID: 35336078 Free PMC article.
-
Enzyme Synergy in Transient Clusters of Endo- and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose.ACS Catal. 2022 Sep 2;12(17):10984-10994. doi: 10.1021/acscatal.2c02377. Epub 2022 Aug 24. ACS Catal. 2022. PMID: 36082050 Free PMC article.
-
Solar reforming as an emerging technology for circular chemical industries.Nat Rev Chem. 2024 Feb;8(2):87-105. doi: 10.1038/s41570-023-00567-x. Epub 2024 Jan 30. Nat Rev Chem. 2024. PMID: 38291132 Review.
-
Mechanochemical Coupling of Catalysis and Motion in a Cellulose-Degrading Multienzyme Nanomachine.ACS Catal. 2024 Feb 6;14(4):2656-2663. doi: 10.1021/acscatal.3c05653. eCollection 2024 Feb 16. ACS Catal. 2024. PMID: 38384941 Free PMC article.
-
Improvement of Cellulomonas fimi endoglucanase CenA by multienzymatic display on a decameric structural scaffold.Appl Microbiol Biotechnol. 2023 Jul;107(13):4261-4274. doi: 10.1007/s00253-023-12581-6. Epub 2023 May 22. Appl Microbiol Biotechnol. 2023. PMID: 37212884 Free PMC article.
References
-
- Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J.; Eckert C. A.; Frederick W. J. Jr; Hallett J. P.; Leak D. J.; Liotta C. L.; Mielenz J. R.; Murphy R.; Templer R.; Tschaplinski T. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. 10.1126/science.1114736. - DOI - PubMed
-
- Liao Y.; Koelewijn S. F.; van den Bossche G.; van Aelst J.; van den Bosch S.; Renders T.; Navare K.; Nicolaï T.; van Aelst K.; Maesen M.; Matsushima H.; Thevelein J. M.; van Acker K.; Lagrain B.; Verboekend D.; Sels B. F. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 2020, 367, 1385–1390. 10.1126/science.aau1567. - DOI - PubMed
-
- Alonso D. M.; Hakim S. H.; Zhou S.; Won W.; Hosseinaei O.; Tao J.; Garcia-Negron V.; Motagamwala A. H.; Mellmer M. A.; Huang K.; Houtman C. J.; Labbé N.; Harper D. P.; Maravelias C. T.; Runge T.; Dumesic J. A. Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci. Adv. 2017, 3, e160330110.1126/sciadv.1603301. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources