Predicting Composition of Genetic Circuits with Resource Competition: Demand and Sensitivity
- PMID: 34780149
- DOI: 10.1021/acssynbio.1c00281
Predicting Composition of Genetic Circuits with Resource Competition: Demand and Sensitivity
Abstract
The design of genetic circuits typically relies on characterization of constituent modules in isolation to predict the behavior of modules' composition. However, it has been shown that the behavior of a genetic module changes when other modules are in the cell due to competition for shared resources. In order to engineer multimodule circuits that behave as intended, it is thus necessary to predict changes in the behavior of a genetic module when other modules load cellular resources. Here, we introduce two characteristics of circuit modules: the demand for cellular resources and the sensitivity to resource loading. When both are known for every genetic module in a circuit library, they can be used to predict any module's behavior upon addition of any other module to the cell. We develop an experimental approach to measure both characteristics for any circuit module using a resource sensor module. Using the measured resource demand and sensitivity for each module in a library, the outputs of the modules can be accurately predicted when they are inserted in the cell in arbitrary combinations. These resource competition characteristics may be used to inform the design of genetic circuits that perform as predicted despite resource competition.
Keywords: experiment design; modular composition; resource competition.
Similar articles
-
Modular composition of gene transcription networks.PLoS Comput Biol. 2014 Mar 13;10(3):e1003486. doi: 10.1371/journal.pcbi.1003486. eCollection 2014 Mar. PLoS Comput Biol. 2014. PMID: 24626132 Free PMC article.
-
Resource Competition Shapes the Response of Genetic Circuits.ACS Synth Biol. 2017 Jul 21;6(7):1263-1272. doi: 10.1021/acssynbio.6b00361. Epub 2017 Apr 3. ACS Synth Biol. 2017. PMID: 28350160
-
Decoupling Resource-Coupled Gene Expression in Living Cells.ACS Synth Biol. 2017 Aug 18;6(8):1596-1604. doi: 10.1021/acssynbio.7b00119. Epub 2017 May 4. ACS Synth Biol. 2017. PMID: 28459541
-
Engineering synthetic regulatory circuits in plants.Plant Sci. 2018 Aug;273:13-22. doi: 10.1016/j.plantsci.2018.04.005. Epub 2018 Apr 11. Plant Sci. 2018. PMID: 29907304 Review.
-
Building an open academic environment - a new approach to empowering students in their learning of anatomy through 'Shadow Modules'.J Anat. 2014 Mar;224(3):286-95. doi: 10.1111/joa.12112. Epub 2013 Sep 30. J Anat. 2014. PMID: 24117249 Free PMC article. Review.
Cited by
-
Model-Based Investigation of the Relationship between Regulation Level and Pulse Property of I1-FFL Gene Circuits.ACS Synth Biol. 2022 Jul 15;11(7):2417-2428. doi: 10.1021/acssynbio.2c00109. Epub 2022 Jun 21. ACS Synth Biol. 2022. PMID: 35729788 Free PMC article.
-
Pangenomic landscapes shape performances of a synthetic genetic circuit across Stutzerimonas species.mSystems. 2024 Sep 17;9(9):e0084924. doi: 10.1128/msystems.00849-24. Epub 2024 Aug 21. mSystems. 2024. PMID: 39166875 Free PMC article.
-
A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits.Nat Commun. 2024 Mar 4;15(1):1981. doi: 10.1038/s41467-024-46410-9. Nat Commun. 2024. PMID: 38438391 Free PMC article.
-
Biosensor development for single-cell detection of glucuronate.J Ind Microbiol Biotechnol. 2023 Feb 17;50(1):kuad013. doi: 10.1093/jimb/kuad013. J Ind Microbiol Biotechnol. 2023. PMID: 37327078 Free PMC article.
-
Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales.ACS Synth Biol. 2025 Apr 18;14(4):1041-1061. doi: 10.1021/acssynbio.4c00575. Epub 2025 Mar 21. ACS Synth Biol. 2025. PMID: 40116396 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials