Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 16;18(11):e1003830.
doi: 10.1371/journal.pmed.1003830. eCollection 2021 Nov.

Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank

Affiliations

Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank

Yuan Zhang et al. PLoS Med. .

Abstract

Background: Previous studies have revealed the involvement of coffee and tea in the development of stroke and dementia. However, little is known about the association between the combination of coffee and tea and the risk of stroke, dementia, and poststroke dementia. Therefore, we aimed to investigate the associations of coffee and tea separately and in combination with the risk of developing stroke and dementia.

Methods and findings: This prospective cohort study included 365,682 participants (50 to 74 years old) from the UK Biobank. Participants joined the study from 2006 to 2010 and were followed up until 2020. We used Cox proportional hazards models to estimate the associations between coffee/tea consumption and incident stroke and dementia, adjusting for sex, age, ethnicity, qualification, income, body mass index (BMI), physical activity, alcohol status, smoking status, diet pattern, consumption of sugar-sweetened beverages, high-density lipoprotein (HDL), low-density lipoprotein (LDL), history of cancer, history of diabetes, history of cardiovascular arterial disease (CAD), and hypertension. Coffee and tea consumption was assessed at baseline. During a median follow-up of 11.4 years for new onset disease, 5,079 participants developed dementia, and 10,053 participants developed stroke. The associations of coffee and tea with stroke and dementia were nonlinear (P for nonlinear <0.01), and coffee intake of 2 to 3 cups/d or tea intake of 3 to 5 cups/d or their combination intake of 4 to 6 cups/d were linked with the lowest hazard ratio (HR) of incident stroke and dementia. Compared with those who did not drink tea and coffee, drinking 2 to 3 cups of coffee and 2 to 3 cups of tea per day was associated with a 32% (HR 0.68, 95% CI, 0.59 to 0.79; P < 0.001) lower risk of stroke and a 28% (HR, 0.72, 95% CI, 0.59 to 0.89; P = 0.002) lower risk of dementia. Moreover, the combination of coffee and tea consumption was associated with lower risk of ischemic stroke and vascular dementia. Additionally, the combination of tea and coffee was associated with a lower risk of poststroke dementia, with the lowest risk of incident poststroke dementia at a daily consumption level of 3 to 6 cups of coffee and tea (HR, 0.52, 95% CI, 0.32 to 0.83; P = 0.007). The main limitations were that coffee and tea intake was self-reported at baseline and may not reflect long-term consumption patterns, unmeasured confounders in observational studies may result in biased effect estimates, and UK Biobank participants are not representative of the whole United Kingdom population.

Conclusions: We found that drinking coffee and tea separately or in combination were associated with lower risk of stroke and dementia. Intake of coffee alone or in combination with tea was associated with lower risk of poststroke dementia.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Restricted cubic spline models for the relationship between coffee, tea, and their combination with stroke, dementia, and poststroke dementia.
(A1) Coffee and stroke. (A2) Tea and stroke. (A3) Combination of coffee and tea on stroke. (B1) Coffee and dementia. (B2) Tea and dementia. (B3) Combination of coffee and tea on dementia. (C1) Coffee and poststroke dementia. (C2) Tea and poststroke dementia. (C3) Combination of coffee and tea on poststroke dementia. The 95% CIs of the adjusted HRs are represented by the shaded area. Restricted cubic spline model is adjusted for sex, age, ethnicity, qualification, income, BMI, smoking status, alcohol status, physical activity, diet pattern, consumption of sugar-sweetened beverages, HDL, LDL, cancer, diabetes, CAD, and hypertension, and we adjusted for coffee in tea analysis or for tea in coffee analysis. BMI, body mass index; CAD, cardiovascular arterial disease; HDL, high-density lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein.
Fig 2
Fig 2. Association of coffee and tea intake with stroke and its subtypes.
(A) Coffee and tea with stroke. (B) Coffee and tea with ischemic stroke. (C) Coffee and tea with hemorrhage stroke. Multivariable model is adjusted for sex, age, ethnicity (White, Asian or Asian British, Black or Black British, and Other ethnic group), qualification (college or university degree, A levels/AS levels or equivalent, O levels/GCSEs or equivalent, CSEs or equivalent, NVQ or HND or HNC or equivalent, other professional qualifications, or none of the above), income (less than £18,000, 18,000 to 30,999, 31,000 to 51,999, 52,000 to 100,000, and greater than 100,000), BMI (<25, 25 to <30, 30 to <35, and ≥35 kg/m2), smoking status (never, former, and current), alcohol status (never, former, and current), physical activity (low, moderate, and high), diet pattern (healthy and unhealthy, created by fruits, vegetables, fish, processed meats, unprocessed red meats, whole grains, and refined grains), consumption of sugar-sweetened beverages, HDL, LDL, cancer, diabetes, CAD, and hypertension, and we adjusted for coffee in tea analysis or for tea in coffee analysis. A, Advanced; AS, Advanced Subsidiary; BMI, body mass index; CAD, cardiovascular arterial disease; CSE, Certificate of Secondary Education; GCSE, General Certificate of Secondary Education; HDL, high-density lipoprotein; HNC, Higher National Certificate; HND, Higher National Diploma; HR, hazard ratio; LDL, low-density lipoprotein; NVQ, National Vocational Qualification; O, Ordinary.
Fig 3
Fig 3. Association of coffee and tea intake with dementia and its subtypes.
(A) Coffee and tea with dementia. (B) Coffee and tea with Alzheimer disease. (C) Coffee and tea with vascular dementia. Multivariable model is adjusted for sex, age, ethnicity (White, Asian or Asian British, Black or Black British, and Other ethnic group), qualification (college or university degree, A levels/AS levels or equivalent, O levels/GCSEs or equivalent, CSEs or equivalent, NVQ or HND or HNC or equivalent, other professional qualifications, or none of the above), income (less than £18,000, 18,000 to 30,999, 31,000 to 51,999, 52,000 to 100,000, and greater than 100,000), BMI (<25, 25 to <30, 30 to <35, and ≥35 kg/m2), smoking status (never, former, and current), alcohol status (never, former, and current), physical activity (low, moderate, and high), diet pattern (healthy and unhealthy, created by fruits, vegetables, fish, processed meats, unprocessed red meats, whole grains, and refined grains), consumption of sugar-sweetened beverages, HDL, LDL, cancer, diabetes, CAD, and hypertension, and we adjusted for coffee in tea analysis or for tea in coffee analysis. A, Advanced; AS, Advanced Subsidiary; BMI, body mass index; CAD, cardiovascular arterial disease; CSE, Certificate of Secondary Education; GCSE, General Certificate of Secondary Education; HDL, high-density lipoprotein; HNC, Higher National Certificate; HND, Higher National Diploma; HR, hazard ratio; LDL, low-density lipoprotein; NVQ, National Vocational Qualification; O, Ordinary.

References

    1. Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, et al. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol 2019;73(25):3326–44. Epub 2019/06/30. doi: 10.1016/j.jacc.2019.04.034 ; PubMed Central PMCID: PMC6719789. - DOI - PMC - PubMed
    1. International AsD. World Alzheimer’s Report 2019. Available at: https://www.alz.co.uk/research/world-report-2019.
    1. Collaborators GBDCoD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390(10100):1151–210. Epub 2017/09/19. doi: 10.1016/S0140-6736(17)32152-9 ; PubMed Central PMCID: PMC5605883. - DOI - PMC - PubMed
    1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388(10053):1545–602. Epub 2016/10/14. doi: 10.1016/S0140-6736(16)31678-6 ; PubMed Central PMCID: PMC5055577. - DOI - PMC - PubMed
    1. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990–2013: The GBD 2013 Study. Neuroepidemiology 2015;45(3):161–76. Epub 2015/10/28. doi: 10.1159/000441085 ; PubMed Central PMCID: PMC4633282. - DOI - PMC - PubMed

Publication types