Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;88(13):1209-1222.
doi: 10.1055/a-1671-5525. Epub 2021 Nov 16.

Cyanogenesis in Aralia spinosa (Araliaceae)

Affiliations
Free article

Cyanogenesis in Aralia spinosa (Araliaceae)

Matthias Lechtenberg et al. Planta Med. 2022 Oct.
Free article

Abstract

A systematic survey of Aralia spinosa (Araliaceae), covering an entire growing season and including aboveground organs at various developmental stages, revealed that only about half of all samples collected showed cyanogenesis. Cyanogenesis was detected in inflorescences and leaves but is apparently restricted to certain harvest times or developmental stages. The structurally unusual triglochinin, characterized by a hex-2-enedioic acid partial structure, was the only cyanogenic glycoside detected. This is the first description of triglochinin in this species and in the family of Araliaceae. Triglochinin is biogenetically derived from tyrosine, which is in good agreement with the few cyanogenic glycosides previously detected in members of the Araliaceae family. Triglochinin was identified, characterized, and quantified by modern chromatographic methods, and the amount of enzymatically releasable hydrocyanic acid was determined qualitatively and quantitatively. Two isomers of triglochinin were detected chromatographically at minor levels. The isomeric pattern agreed well with literature data from other triglochinin-containing plants. This was confirmed in the two species, Triglochin maritima and Thalictrum aquilegiifolium, which were comparatively studied. In the case of A. spinosa, inflorescence buds harvested in July showed the highest content of triglochinin, just under 0.2% on a dry weight basis. The detection of triglochinin adds to the knowledge of toxicological properties and the dereplication of U(H)PLC/MS² data provides a comprehensive phytochemical profile of A. spinosa.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

LinkOut - more resources