A Protocol for Phylogenetic Reconstruction
- PMID: 34786674
- DOI: 10.1007/978-1-0716-1822-6_4
A Protocol for Phylogenetic Reconstruction
Abstract
The similarity of biological functions and molecular mechanisms in living organisms suggests their common origin. The inference of evolutionary relationships among the extant organisms is primarily based on structural, functional, and sequence data of biomolecules, such as DNA, RNA, and protein, and their relative changes over the course of time. To decipher evolutionary relationships, a variety of data can be used. The exponential growth of genomic data, spurred by advances in DNA sequencing, has enabled biologists to reconstruct the tree or network of life for a vast number of organisms dwelling in the earth. In addition of organismal relationships, phylogenetic analysis is often performed to characterize gene families, specifically to identify the orthologs and paralogs of a gene of interest and understand their varied functions in light of evolution. In this chapter, we describe a protocol for reconstructing a phylogenetic tree using maximum-likelihood approach. We demonstrate using an example dataset and a suite of publicly available programs.
Keywords: Maximum-likelihood; Phylogenetic analysis; Phylogenetic reconstruction; Phylogenetic tree.
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
References
-
- Lack D (1983) Darwin's finches. Cambridge University Press, Cambridge
-
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 - DOI - PubMed - PMC
-
- Finn RD (2005) Pfam: the protein families database. In: Encyclopedia of genetics, genomics, proteomics and bioinformatics. Wiley, Hoboken, New Jersey. https://doi.org/10.1002/047001153X.g306303 - DOI
-
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340 - DOI - PubMed - PMC
-
- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973 - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
