Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 1:179:277-287.
doi: 10.1016/j.freeradbiomed.2021.11.011. Epub 2021 Nov 16.

Spatial transcriptome analysis defines heme as a hemopexin-targetable inflammatoxin in the brain

Affiliations
Free article

Spatial transcriptome analysis defines heme as a hemopexin-targetable inflammatoxin in the brain

Raphael M Buzzi et al. Free Radic Biol Med. .
Free article

Abstract

After intracranial hemorrhage, heme is released from cell-free hemoglobin. This red blood cell component may drive secondary brain injury at the hematoma‒brain interface. This study aimed to generate a spatially resolved map of transcriptome-wide gene expression changes in the heme-exposed brain and to define the potential therapeutic activity of the heme-binding protein, hemopexin. We stereotactically injected saline, heme, or heme‒hemopexin into the striatum of C57BL/6J mice. After 24 h, we elucidated the two-dimensional spatial transcriptome by sequencing 21760 tissue-covered features, at a mean transcript coverage of 3849 genes per feature. In parallel, we studied the extravasation of systemically administered fluorescein isothiocyanate labeled (FITC)-dextran, magnetic resonance imaging features indicative of focal edema and perfusion, and neurological functions as translational correlates of heme toxicity. We defined a cerebral heme-response signature by performing bidimensional differential gene expression analysis, based on unsupervised clustering and manual segmentation of sequenced features. Heme exerted a consistent and dose-dependent proinflammatory activity in the brain, which occurred at minimal exposures, below the toxicity threshold for the induction of vascular leakage. We found dose-dependent regional divergence of proinflammatory heme signaling pathways, consistent with reactive astrocytosis and microglial activation. Co-injection of heme with hemopexin attenuated heme-induced gene expression changes and preserved the homeostatic microglia signature. Hemopexin also prevented heme-induced disruption of the blood‒brain barrier and radiological and functional signals of heme injury in the brain. In conclusion, we defined heme as a potent inflammatoxin that may drive secondary brain injury after intracerebral hemorrhage. Co-administration of hemopexin attenuated the heme-derived toxic effects on a molecular, cellular, and functional level, suggesting a translational therapeutic strategy.

Keywords: Hemopexin; Intracerebral hemorrhage; Protein therapeutics; Secondary brain injury.

PubMed Disclaimer

Publication types