Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec:144:112358.
doi: 10.1016/j.biopha.2021.112358. Epub 2021 Oct 28.

Sanguinarine mediated apoptosis in Non-Small Cell Lung Cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway

Affiliations
Free article

Sanguinarine mediated apoptosis in Non-Small Cell Lung Cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway

Kirti S Prabhu et al. Biomed Pharmacother. 2021 Dec.
Free article

Abstract

Effective treatment of lung cancer remains a significant clinical challenge due to its multidrug resistance and side effects of the current treatment options. The high mortality associated with this malignancy indicates the need for new therapeutic interventions with fewer side effects. Natural compounds offer various benefits such as easy access, minimal side effects, and multi-molecular targets and thus, can prove useful in treating lung cancer. Sanguinarine (SNG), a natural compound, possesses favorable therapeutic potential against a variety of cancers. Here, we examined the underlying molecular mechanisms of SNG in Non-Small Cell Lung Cancer (NSCLC) cells. SNG suppressed cell growth and induced apoptosis via downregulation of the constitutively active JAK/STAT pathway in all the NSCLC cell lines. siRNA silencing of STAT3 in NSCLC cells further confirmed the involvement of the JAK/STAT signaling cascade. SNG treatment increased Bax/Bcl-2 ratio, which contributed to a leaky mitochondrial membrane leading to cytochrome c release accompanied by caspase activation. In addition, we established the antitumor effects of SNG through reactive oxygen species (ROS) production, as inhibiting ROS production prevented the apoptosis-inducing potential of SNG. In vivo xenograft tumor model further validated our in vitro findings. Overall, our study investigated the molecular mechanisms by which SNG induces apoptosis in NSCLC, providing avenues for developing novel natural compound-based cancer therapies.

Keywords: Alkaloids; Antioxidants; Antiproliferative; Apoptosis; Cancer stem cells; ROS; STAT3; Sanguinarine.

PubMed Disclaimer

MeSH terms