Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 18;14(1):216.
doi: 10.1186/s13068-021-02067-w.

A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering

Affiliations
Review

A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering

Yuan-Ming Tao et al. Biotechnol Biofuels. .

Abstract

1,2-Propanediol is an important building block as a component used in the manufacture of unsaturated polyester resin, antifreeze, biofuel, nonionic detergent, etc. Commercial production of 1,2-propanediol through microbial biosynthesis is limited by low efficiency, and chemical production of 1,2-propanediol requires petrochemically derived routes involving wasteful power consumption and high pollution emissions. With the development of various strategies based on metabolic engineering, a series of obstacles are expected to be overcome. This review provides an extensive overview of the progress in the microbial production of 1,2-propanediol, particularly the different micro-organisms used for 1,2-propanediol biosynthesis and microbial production pathways. In addition, outstanding challenges associated with microbial biosynthesis and feasible metabolic engineering strategies, as well as perspectives on the future microbial production of 1,2-propanediol, are discussed.

Keywords: 1,2-Propanediol; Metabolic engineering; Metabolic pathway; Micro-organism.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Metabolic pathways for the production of 1,2-PDO from l-fucose and l-rhamnose (Deoxyhexose pathway). The genes in Fig. 1 are all from E. coli. fucP: l-fucose permease; rhaT: l-rhamnose permease; fucI: l-fucose isomerase; rhaA: l-rhamnose isomerase; fucK: l-fuculokinase; rhaB: l-rhamnulokinase; fucA: l-fuculose-1-phosphate aldolase; rhaD: l-rhamnulose-1-phosphate aldolase; fucO: propanediol oxidoreductase
Fig. 2
Fig. 2
Metabolic pathways for the production of 1,2-PDO from glucose (Methylglyoxal pathway). The genes in Fig. 2 are all from E. coli. ALDO: fructose–bisphosphate aldolase; tpi: triose-phosphate isomerase; mgsA: methylglyoxal synthase; gldA: glycerol dehydrogenase; yqhD: alcohol dehydrogenase; fucO: propanediol oxidoreductase; Glyoxalase system: glyoxalase I (lactoylglutathione lyase), glyoxalase II (hydroxyacylglutathione hydrolase)
Fig. 3
Fig. 3
Metabolic pathways for the production of 1,2-PDO from lactate (Lactate pathway). Acetate and ethanol synthesis pathway are from the proposed pathway for anaerobic degradation of lactic acid by L. buchneri [24]. Pct: propionate CoA-transferase (M. elsdenii); pduP: propanal dehydrogenase (S. enterica); yahK: lactaldehyde reductase (E. coli)

References

    1. Abdel-Shafy HI, Mansour MSM. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt J Pet. 2018;27:1275–1290. doi: 10.1016/j.ejpe.2018.07.003. - DOI
    1. Yadav VG, Yadav GD, Patankar SC. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Technol Environ Policy. 2020;22:1757–1774. doi: 10.1007/s10098-020-01945-5. - DOI - PMC - PubMed
    1. Ahorsu R, Medina F, Constantí M. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies. 2018;11:3366.
    1. Jiang Y, Liu J, Jiang W, Yang Y, Yang S. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. 2015;33:1493–1501. doi: 10.1016/j.biotechadv.2014.10.007. - DOI - PubMed
    1. Sharma B, Larroche C, Dussap CG. Comprehensive assessment of 2G bioethanol production. Bioresour Technol. 2020;313:123630. doi: 10.1016/j.biortech.2020.123630. - DOI - PubMed

LinkOut - more resources