Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 26;61(5):e202114485.
doi: 10.1002/anie.202114485. Epub 2021 Dec 14.

Synthesis and Reactivity of a Neutral Homocyclic Silylene

Affiliations

Synthesis and Reactivity of a Neutral Homocyclic Silylene

Jan Keuter et al. Angew Chem Int Ed Engl. .

Abstract

Isolation of the neutral homocyclic silylene 2 is possible via amine ligand abstraction with potassium graphite (KC8 ) and subsequent reaction with SiMe3 Cl from a bicyclic silicon(I) amide J. This reaction proceeds via an anionic homoaromatic silicon ring compound 1 as an intermediate. The twofold-coordinated silicon atom in the homocyclic silylene 2 is stabilized by an allyl-type π-electron delocalization. 2 reacts in an oxidative addition with two equivalents of MeOH and in cycloadditions with ethene, phenylacetylene, diphenylacetylene and with 2,3-dimethyl-1,3-butadiene to afford novel functionalized ring compounds.

Keywords: Homoaromaticity; Homocyclic; N ligands; Silylene; Small molecule activation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Isolable heterocyclic silylenes BH and acyclic silylenes A and I that are in equilibrium with SiIV species. Ar=2,6‐iPr2C6H3).
Scheme 1
Scheme 1
Synthesis of 1 and 2.
Figure 2
Figure 2
Left: Molecular structure of 1. Thermal ellipsoids are set at 50 % probability level. H atoms are not shown. Selected bond lengths [Å] and angles [°] for 1: Si1–Si2 2.274(8), Si2–Si3 2.411(8), Si3–Si4 2.447(8), Si4–Si1 2.275(8), Si2⋅⋅⋅Si4 2.451(8), Si1⋅⋅⋅Si3 3.951(1), Si2–N1 1.766(2), Si3–N2 1.848(2), Si4–N3 1.774(2); Si2‐Si1‐Si4 65.21(3), Si2‐Si3‐Si4 60.60(2), N1‐Si2‐Si4 149.75(7), N3‐Si4‐Si2, 151.11(7), Si1‐Si2‐Si4‐Si3 159.864(5). Center and Right: Frontier molecular orbitals of 1opt with orientation of the molecule identical to that shown on the left (TPSS‐D3/def2‐TZVP, Isovalue set at +/− 0.05 a.u.).
Figure 3
Figure 3
Top: Molecular structure of 2. Thermal ellipsoids are set at a 50 % probability level. H atoms are not shown. Selected bond lengths [Å] and angles [°] for 2: Si1–Si2 2.248(9), Si2–Si3 2.408(1), Si3–Si4 2.400(5), Si2⋅⋅⋅Si2′ 2.682(1), Si1⋅⋅⋅Si3 3.779(1), Si2–N1 1.750(2), Si3–N2 1.759(3), Si2‐Si1‐Si2′ 73.24(4), Si1‐Si2‐Si3 108.44(3), Si2‐Si3‐Si2′ 67.69(4), N1‐Si2‐Si2′ 167.72(6), Si1‐Si2‐Si2′‐Si3 166.633(2). Bottom: Frontier molecular orbitals of 2opt with orientation of the molecule identical to that shown on the left (TPSS‐D3/def2‐TZVP, Isovalue set at +/− 0.05 a.u.).
Scheme 2
Scheme 2
Reactivity of 2, R=N(SiMe3)Dipp.
Figure 4
Figure 4
Cutouts of molecular structures 35. Thermal ellipsoids are set at a 50 % probability level. SiMe3 and Dipp groups are not shown. Selected bond lengths [Å] for 3: Si1–O1 1.633(4), Si1–O2 1.643(4), Si1–Si2 2.3709(19), Si2–Si3 2.3831(19), Si3–Si4 2.4266(19), Si4–Si1 2.4026(18), Si4–Si8 2.392(2), Si1⋅⋅⋅Si3 3.114(2), Si2⋅⋅⋅Si4 3.468(2). For 4: Si1–Si2 2.3649(8), Si2–Si3 2.4178(7), Si3–Si4 2.3914(8), Si4–Si1 2.3638(8), Si2–Si4 2.3493(8), Si1⋅⋅⋅Si3 2.9819(2), Si1–C1 1.922(2), Si3–C2 1.896(2), C1–C2 1.504(3). For 5: Si1–Si2 2.2840(11), Si2–Si3 2.2302(11), Si3–Si4 2.3634(11), Si4–Si1 2.3640(11), Si1⋅⋅⋅Si3 3.0701(1), Si2Si4 3.328(1), Si1–C1 1.818(3), Si1–C2 1.838(3), C1–C2 1.331(5).
Figure 5
Figure 5
Cutouts of molecular structures 6 and 7. Thermal ellipsoids are set at a 50 % probability level. SiMe3 and Dipp groups are not shown. Selected bond lengths [Å] For 6: Si1–Si2 2.3025(9), Si2–Si3 2.2600(8), Si3–Si4 2.3705(8), Si4–Si1 2.3729(9), Si1⋅⋅⋅Si3 3.1195(1), Si2⋅⋅⋅Si4 3.370(1), Si1–C1 1.840(2), Si1–C2 1.839(2), C1–C2 1.341(3). For 7: Si1–Si2 2.3021(15), Si2–Si3 2.2193(15), Si3–Si4 2.3642(16), Si4–Si1 2.3815(15), Si1Si3 3.1579(2), Si2⋅⋅⋅Si4 3.278(2), Si1–C1 1.893(5), C1–C2 1.523(7), C2–C3 1.322(7), C3–C4 1.506(6), Si1–C4 1.903(5).
Figure 6
Figure 6
Calculated isomerization of 2/2′/2′′ and intermediates and transition structures in the reaction of 2/2′ with ethene. In brackets: calculated free energies relative to isolated reactants (2 and ethene) in kcal mol−1.
Figure 7
Figure 7
Calculated product 5 and hypothetical products 8 and 9 a. In brackets: calculated free energies relative to isolated reactants (2 and phenylacetylene) in kcal mol−1.
Figure 8
Figure 8
Calculated intermediates and transition states during the formation of 3. In brackets: calculated free energies relative to isolated reactants (2 and two MeOH molecules) in kcal mol−1.

References

    1. None
    1. Haaf M., Schmedake T., West R., Acc. Chem. Res. 2000, 33, 704–714; - PubMed
    1. Mizuhata Y., Sasamori T., Tokitoh N., Chem. Rev. 2009, 109, 3479–3511; - PubMed
    1. Asay M., Jones C., Driess M., Chem. Rev. 2011, 111, 354–396; - PubMed
    1. Gehrhus B., Lappert M. F., Heinicke J., Boese R., Bläser D., J. Chem. Soc. Chem. Commun. 1995, 1931–1932;