Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan:116:103894.
doi: 10.1016/j.jdent.2021.103894. Epub 2021 Nov 17.

Bisphenol A release from short-term degraded resin-based dental materials

Affiliations

Bisphenol A release from short-term degraded resin-based dental materials

Siemon De Nys et al. J Dent. 2022 Jan.

Abstract

Objectives: There is still much debate about the release of bisphenol A (BPA) from resin-based dental materials. Therefore, this study aimed to quantify BPA present as an impurity and to evaluate whether their degradation by salivary, bacterial, and chemical challenges could increase its release.

Methods: BPA was determined in three different amounts (300, 400, and 500 µg) of eight unpolymerized resin-based materials (four composites, one fissure sealant, two adhesives and one root canal sealer). Next, polymerized samples (n = 5) of each material were immersed in 1 mL of whole human pooled saliva collected from adults, Streptococcus mutans (2 × 107 CFU/mL), and acidic (0.1 M HCl), alkaline (0.1 M NaOH), and control media, respectively. The amount of BPA was quantified using an UPLC-MS/MS method including derivatization of BPA by pyridine-3-sulfonyl chloride.

Results: Only the composites contained trace amounts of BPA above the limit of quantification (ranging from 301±32 pg PBA/mg to 1534±62 pg BPA/mg), most likely as impurity from the synthesis of the monomers. The amounts of BPA released from polymerized materials upon salivary and bacterial degradation were too low for accurate quantification, but in water, quantifiable amounts of BPA were released from all materials. In alkaline media, the BPA release from two composites was significantly decreased, while the release from one adhesive was significantly increased, compared to water.

Conclusions: BPA already present in unpolymerized resin-based materials may account for the release of BPA after polymerization. There was no clear indication that short-term material degradation leads to increased release of BPA.

Keywords: Bisphenol A; Composite; Degradation; Endocrine disruptor; Resin-based dental materials.

PubMed Disclaimer

Publication types

LinkOut - more resources