Global increase in wildfire risk due to climate-driven declines in fuel moisture
- PMID: 34800319
- DOI: 10.1111/gcb.16006
Global increase in wildfire risk due to climate-driven declines in fuel moisture
Abstract
There is mounting concern that global wildfire activity is shifting in frequency, intensity, and seasonality in response to climate change. Fuel moisture provides a powerful means of detecting changing fire potential. Here, we use global burned area, weather reanalysis data, and the Canadian fire weather index system to calculate fuel moisture trends for multiscale biogeographic regions across a gradient in vegetation productivity. We quantify the proportion of days in the local fire season between 1979 and 2019, where fuel moisture content is below a critical threshold indicating extreme fire potential. We then associate fuel moisture trends over that period to vegetation productivity and comment on its implications for projected anthropogenic climate change. Overall, there is a strong drying trend across realms, biomes, and the productivity gradient. Even where a wetting trend is observed, this often indicates a trend toward increasing fire activity due to an expected increase in fuel production. The detected trends across the productivity gradient lead us to conclude global fire activity will increase with anthropogenic climate change.
Keywords: climate change; climate reanalysis; fire risk; fuel; fuel moisture; net primary productivity; pyrogeography; wildfire.
© 2021 John Wiley & Sons Ltd.
Similar articles
-
Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems.Sci Total Environ. 2021 Nov 25;797:149104. doi: 10.1016/j.scitotenv.2021.149104. Epub 2021 Jul 17. Sci Total Environ. 2021. PMID: 34303242
-
Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003.Ecol Appl. 2009 Jun;19(4):1003-21. doi: 10.1890/07-1183.1. Ecol Appl. 2009. PMID: 19544740
-
Constraints on global fire activity vary across a resource gradient.Ecology. 2011 Jan;92(1):121-32. doi: 10.1890/09-1843.1. Ecology. 2011. PMID: 21560682
-
Novel wildfire regimes under climate change and human activity: patterns, driving mechanisms and ecological impacts.Philos Trans R Soc Lond B Biol Sci. 2025 Apr;380(1924):20230446. doi: 10.1098/rstb.2023.0446. Epub 2025 Apr 17. Philos Trans R Soc Lond B Biol Sci. 2025. PMID: 40241461 Free PMC article. Review.
-
Elevation in wildfire frequencies with respect to the climate change.J Environ Manage. 2022 Jan 1;301:113769. doi: 10.1016/j.jenvman.2021.113769. Epub 2021 Sep 29. J Environ Manage. 2022. PMID: 34600426 Review.
Cited by
-
A Lightweight Remote Sensing Payload for Wildfire Detection and Fire Radiative Power Measurements.Sensors (Basel). 2023 Mar 27;23(7):3514. doi: 10.3390/s23073514. Sensors (Basel). 2023. PMID: 37050572 Free PMC article.
-
Human driven climate change increased the likelihood of the 2023 record area burned in Canada.NPJ Clim Atmos Sci. 2024;7(1):316. doi: 10.1038/s41612-024-00841-9. Epub 2024 Dec 20. NPJ Clim Atmos Sci. 2024. PMID: 39712870 Free PMC article.
-
Climate change aggravated wildfire behaviour in the Iberian Peninsula in recent years.NPJ Clim Atmos Sci. 2025;8(1):19. doi: 10.1038/s41612-025-00906-3. Epub 2025 Jan 15. NPJ Clim Atmos Sci. 2025. PMID: 39830681 Free PMC article.
-
Evaluating fuelbreak strategies for compartmentalizing a fire-prone forest landscape in Alberta, Canada.PLoS One. 2025 May 21;20(5):e0321722. doi: 10.1371/journal.pone.0321722. eCollection 2025. PLoS One. 2025. PMID: 40397881 Free PMC article.
-
A trans-Atlantic perspective on successful plantation establishment in boreal ecosystems: lessons learned and research opportunities.New For (Dordr). 2025;56(1):16. doi: 10.1007/s11056-024-10086-2. Epub 2024 Dec 4. New For (Dordr). 2025. PMID: 39649012 Free PMC article. Review.
References
REFERENCES
-
- Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113(42), 11770-11775. https://doi.org/10.1073/pnas.1607171113
-
- Abatzoglou, J. T., Williams, A. P., & Barbero, R. (2019). Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters, 46(1), 326-336. https://doi.org/10.1029/2018gl080959
-
- Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356-1362. https://doi.org/10.1126/science.aal4108
-
- Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., & Randerson, J. T. (2019). The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 11(2), 529-552. https://doi.org/10.5194/essd-11-529-2019
-
- Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V. J., Silva Junior, C. H. L., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J. A., Miller, J. B., … Saatchi, S. (2018). 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 9(1), 1-12. https://doi.org/10.1038/s41467-017-02771-y
MeSH terms
LinkOut - more resources
Full Text Sources
Medical