Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar;291(Pt 2):132954.
doi: 10.1016/j.chemosphere.2021.132954. Epub 2021 Nov 17.

Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review

Affiliations
Review

Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review

Bo Li et al. Chemosphere. 2022 Mar.

Abstract

As a clean and efficient technology for the degradation of organic contaminants, sulfate radical based advanced oxidation processes (SR-AOPs) have attracted more and more attention in the past decades. Cobalt is regarded as the most reactive and efficient non-noble metal catalyst for the activation of persulfate including peroxymonosulfate (PMS) and peroxydisulfate (PDS) to produce sulfate radicals. Due to the limitations of homogeneous catalytic systems, the heterogeneous cobalt-containing catalysts have been emerged and rapidly developed. Various strategies have been schemed to further enhance the activation ability of persulfate by heterogeneous cobalt-containing catalysts. This paper provides an overview on the recent progress in enhancement strategies for the highly efficient activation of persulfate by heterogeneous cobalt-containing catalysts. With a brief introduction on the chemistry and feature of sulfate radical reactions catalyzed by homogeneous Co2+/Co3+ species, the main strategies for enhancing persulfate activation by heterogeneous cobalt-containing catalysts are summarized, such as surface and morphology design, multiple reactive centers design, organic-inorganic hybrids and heterostructure composites. Future perspectives of heterogeneous SR-AOPs systems catalyzed by cobalt-containing catalysts are outlined.

Keywords: Cobalt-containing catalysts; Enhancement strategies; Persulfate; SR-AOPs; Wastewater treatment.

PubMed Disclaimer

LinkOut - more resources