Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 11;94(1):26-40.
doi: 10.1021/acs.analchem.1c03856. Epub 2021 Nov 22.

Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials

Affiliations

Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials

Sima Singh et al. Anal Chem. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Difference between the conventional test procedure vs POCT. Adapted under the terms and conditions of the CC-BY license from Miesler, T.; Wimschneider, C.; Brem, A.; Meinel, L. ACS Biomater. Sci. Eng.2020, 6 (5), 2709–2725 (ref (14)).
Figure 2
Figure 2
Schematic illustration of AMR diagnostic landscape. (a) Description of the routine laboratory diagnostics, (b and c) sites for POC tests and a hierarchical feature for an ideal POC test/device. Adapted under the terms and conditions of the CC-BY license from Dave, V. P.; Ngo, T. A.; Pernestig, A. K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D. D. Lab Invest.2019, 99, 452–469 (ref (34)).
Figure 3
Figure 3
Schematic presentation of the role of noble MNPs in numerous biosensors. Adapted under the terms and conditions of the CC-BY license from Malekzad, H.; Sahandi Zangabad, P.; Mirshekari, H.; Karimi, M.; Hamblin, M. R. Noble Metal Nanoparticles in Biosensors: Recent Studies and Applications. Nanotechnol Rev.2017, 6 (3), 301–329 (ref (44)).
Figure 4
Figure 4
Application of lanthanide nanoparticles in sensing. Reproduced from Kumar, B.; Malhotra, K.; Fuku, R.; Van Houten, J.; Qu, G. Y.; Piunno, P. A. E.; Krull, U. J. TrAC–Trends Anal. Chem.2021, 139, 116256 (ref (76)). Copyright 2021, with permission from Elsevier.
Figure 5
Figure 5
Assemblies of dendrimers on electrode surfaces: (A) molecularly organized dendrimer monolayer, (B) monolayer of metal nanoparticle-decorated dendrimers, (C) dendrimer layered on the nanomaterial-modified surface, (D) dendrimer layered on the polymer-coated surface and layer-by-layer assemblies of (E) dendrimer/dendrimer, (F) dendrimer/protein, (G) dendrimer/nanoparticles, and (H) dendrimer/polymer bilayers. Adapted under the terms and conditions of the CC-BY license from Sánchez, A.; Villalonga, A.;Martínez-García, G.; Parrado, C.; Villalonga, R. Dendrimers as Soft Nanomaterials for Electrochemical Immunosensors. Nanomaterials2019, 9 (12), 1745 (ref (103)).
Figure 6
Figure 6
Colorimetric detection of E. coli bacteria. (a) The antimicrobial peptide-based colorimetric bioassay for detecting E. coli. Reproduced from Qiao, Z.; Lei, C.; Fu, Y.; Li, Y. An Antimicrobial Peptide-Based Colorimetric Bioassay for Rapid and Sensitive Detection of E. coli O157:H7. RSC Adv.2017, 7, 15769 (ref (144)). Copyright 2017, with permission of The Royal Society of Chemistry. (b) SERS based detection of E. coli. Zhou, S.; Lu, C.; Li, Y.; Xue, L.; Zhao, C.; Tian, G.; Bao, Y.; Tang, L.; Lin, J.; Zheng, J. ACS Sensors2020, 5 (2), 588–596 (ref (147)). Copyright 2020 American Chemical Society.
Figure 7
Figure 7
Electrochemical biosensors for pathogen detection: components and measurement formats. Reproduced from Cesewski, E.; Johnson, B. N. Electrochemical Biosensors for Pathogen Detection. Biosens Bioelectron.2020, 159, 112214 (ref (163)). Copyright 2020, with permission from Elsevier.

Similar articles

Cited by

References

    1. Gan B. H.; Gaynord J.; Rowe S. M.; Deingruber T.; Spring D. R. The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions. Chem. Soc. Rev. 2021, 50, 7820.10.1039/D0CS00729C. - DOI - PMC - PubMed
    1. Boolchandani M.; D’Souza A. W.; Dantas G. Sequencing-Based Methods and Resources to Study Antimicrobial Resistance. Nat. Rev. Genet. 2019, 10.1038/s41576-019-0108-4. - DOI - PMC - PubMed
    1. Khan N. A.; Ahmed S.; Farooqi I. H.; Ali I.; Vambol V.; Changani F.; Yousefi M.; Vambol S.; Khan S. U.; Khan A. H. Occurrence, Sources and Conventional Treatment Techniques for Various Antibiotics Present in Hospital Wastewaters: A Critical Review. TrAC, Trends Anal. Chem. 2020, 129, 115921.10.1016/j.trac.2020.115921. - DOI
    1. Mattar C.; Edwards S.; Baraldi E.; Hood J. An Overview of the Global Antimicrobial Resistance Research and Development Hub and the Current Landscape. Curr. Opin. Microbiol. 2020, 57, 56.10.1016/j.mib.2020.06.009. - DOI - PubMed
    1. O’Dowd A. Tackling Antimicrobial Resistance Should Be “Top Five” Priority for UK Government, MPs Urge. BMJ 2018, k4444.10.1136/bmj.k4444. - DOI - PubMed

MeSH terms

Substances