Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 22;14(1):199.
doi: 10.1186/s13045-021-01209-9.

Born to survive: how cancer cells resist CAR T cell therapy

Affiliations
Review

Born to survive: how cancer cells resist CAR T cell therapy

Jean Lemoine et al. J Hematol Oncol. .

Abstract

Although chimeric antigen receptor T cells demonstrated remarkable efficacy in patients with chemo-resistant hematologic malignancies, a significant portion still resist or relapse. This immune evasion may be due to CAR T cells dysfunction, a hostile tumor microenvironment, or resistant cancer cells. Here, we review the intrinsic resistance mechanisms of cancer cells to CAR T cell therapy and potential strategies to circumvent them.

Keywords: Immunotherapy; Leukemia; Lymphoma; Myeloma; Therapy.

PubMed Disclaimer

Conflict of interest statement

JL has nothing to disclose. M.R. holds patents related to CAR T cells that are managed to the University of Pennsylvania and licensed to Novartis, Tmunity and viTToria biotherapeutics. M.R. has served as a consultant for nanoString, BMS, GSK, Bayer, and AbClon. M.R. receives research funding from AbClon, nanoString and Beckam Coulter. M.R. is the scientific founder of viTToria biotherapeutics. RH received honoraria from Bristol-Myers Squibb, MSD, Gilead, Kite, Roche, Novartis, Janssen, and Celgene.

Figures

Fig. 1
Fig. 1
Mechanisms responsible for loss of target antigen, conferring resistance to CAR T cell therapy. A Due to tumor heterogeneity before any treatment, pre-existing antigen-negative tumor cells may be responsible for resistance to CAR T cell therapy. B Point mutations or altered alternative splicing may lead to a truncated target antigen that can no longer be recognized by CAR T cells. C Defect in target antigen maturation and trafficking due to lack of appropriate chaperon proteins may be responsible for target antigen membrane expression loss. D Exceptionally, a tumor cell may be transfected with the CAR vector leading to an epitope masking by the CAR itself and hiding the target antigen from the CAR T cells. E Lineage switch may be responsible for a complete phenotypic markers remodeling including loss of the target antigen
Fig. 2
Fig. 2
Resistance mechanisms to CAR T cell therapy independent of target antigen loss. A Expression of inhibitory ligands (such as PD-L1) by tumor cells inhibit CAR T cell cytotoxicity despite target antigen recognition by CAR. B Lack of CD58 expression by tumor cells prevent CD2 to deliver a costimulatory to CAR T cell resulting in an impaired cytotoxicity despite target antigen recognition by CAR. C Impaired apoptotic machinery in tumor cells confer intrinsic tumor cell resistance to CAR T cell mediated immune killing despite target antigen recognition by CAR

References

    1. Chong EA, Ruella M, Schuster SJ, Lymphoma Program Investigators at the University of Pennsylvania. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N Engl J Med. 2021;384:673–4. - PubMed
    1. Ghilardi G, Braendstrup P, Chong EA, Schuster SJ, Svoboda J, Ruella M. CAR-T TREK through the lymphoma universe, to boldly go where no other therapy has gone before. Br J Haematol. 2021;193:449–465. - PubMed
    1. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8:1219–1226. - PubMed
    1. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21:145–161. - PMC - PubMed
    1. Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell Immunotherapies. Comput Struct Biotechnol J. 2016;14:357–362. - PMC - PubMed

Publication types

LinkOut - more resources