Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan:280:121262.
doi: 10.1016/j.biomaterials.2021.121262. Epub 2021 Nov 17.

High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades

Affiliations

High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades

Qianyu Lin et al. Biomaterials. 2022 Jan.

Abstract

Vitreous endotamponades play essential roles in facilitating retina recovery following vitreoretinal surgery, yet existing clinically standards are suboptimal as they can cause elevated intra-ocular pressure, temporary loss of vision, and cataracts while also requiring prolonged face-down positioning and removal surgery. These drawbacks have spurred the development of next-generation vitreous endotamponades, of which supramolecular hydrogels capable of in-situ gelation have emerged as top contenders. Herein, we demonstrate thermogels formed from hyper-branched amphiphilic copolymers as effective transparent and biodegradable vitreous endotamponades for the first time. These hyper-branched copolymers are synthesised via polyaddition of polyethylene glycol, polypropylene glycol, poly(ε-caprolactone)-diol, and glycerol (branch inducing moiety) with hexamethylene diisocyanate. The hyper-branched thermogels are injected as sols and undergo spontaneous gelation when warmed to physiological temperatures in rabbit eyes. We found that polymers with an optimal degree of hyper-branching showed excellent biocompatibility and was able to maintain retinal function with minimal atrophy and inflammation, even at absolute molecular weights high enough to cause undesirable in-vivo effects for their linear counterparts. The hyper-branched thermogel is cleared naturally from the vitreous through surface hydrogel erosion and negates surgical removal. Our findings expand the scope of polymer architectures suitable for in-vivo intraocular therapeutic applications beyond linear constructs.

Keywords: Biodegradable; High molecular weight; Hyper-branched; Polyurethane; Thermogels; Transparent; Vitreous endotamponades.

PubMed Disclaimer

Publication types

LinkOut - more resources