Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;21(2):160-164.
doi: 10.1038/s41563-021-01142-9. Epub 2021 Nov 22.

Superconductivity in a quintuple-layer square-planar nickelate

Affiliations

Superconductivity in a quintuple-layer square-planar nickelate

Grace A Pan et al. Nat Mater. 2022 Feb.

Abstract

Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.

PubMed Disclaimer

Comment in

References

    1. Bednorz, J. & Müller, K. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986). - DOI
    1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015). - DOI
    1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019). - DOI
    1. Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999). - DOI
    1. Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008). - DOI

Publication types

LinkOut - more resources