Immune system cells from COVID-19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis
- PMID: 34812416
- PMCID: PMC8599136
- DOI: 10.1016/j.isci.2021.103471
Immune system cells from COVID-19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis
Abstract
Mitochondria are pivotal for bioenergetics, as well as in cellular response to viral infections. Nevertheless, their role in COVID-19 was largely overlooked. Here, we analyzed available bulk RNA-seq datasets from COVID-19 patients and corresponding healthy controls (three blood datasets, N = 48 healthy, 119 patients; two respiratory tract datasets, N = 157 healthy, 524 patients). We found significantly reduced mtDNA gene expression in blood, but not in respiratory tract samples from patients. Next, analysis of eight single-cells RNA-seq datasets from peripheral blood mononuclear cells, nasopharyngeal samples, and Bronchoalveolar lavage fluid (N = 1,192,243 cells), revealed significantly reduced mtDNA gene expression especially in immune system cells from patients. This is associated with elevated expression of nuclear DNA-encoded OXPHOS subunits, suggesting compromised mitochondrial-nuclear co-regulation. This, together with elevated expression of ROS-response genes and glycolysis enzymes in patients, suggest rewiring toward glycolysis, thus generating beneficial conditions for SARS-CoV-2 replication. Our findings underline the centrality of mitochondrial dysfunction in COVID-19.
Keywords: Genomics; Immune system; Virology.
© 2021 The Authors.
Conflict of interest statement
The authors declare no competing interests. The manuscript is based on analyses of publicly available data. The source of each dataset is mentioned within the STAR Methods section.
Figures





Similar articles
-
Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes.Genome Res. 2018 Jul;28(7):952-967. doi: 10.1101/gr.226324.117. Epub 2018 Jun 14. Genome Res. 2018. PMID: 29903725 Free PMC article.
-
Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019.Front Immunol. 2021 Apr 14;12:651656. doi: 10.3389/fimmu.2021.651656. eCollection 2021. Front Immunol. 2021. PMID: 33936072 Free PMC article.
-
Defects of mtDNA replication impaired mitochondrial biogenesis during Trypanosoma cruzi infection in human cardiomyocytes and chagasic patients: the role of Nrf1/2 and antioxidant response.J Am Heart Assoc. 2012 Dec;1(6):e003855. doi: 10.1161/JAHA.112.003855. Epub 2012 Dec 19. J Am Heart Assoc. 2012. PMID: 23316324 Free PMC article.
-
Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation.Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):1107-11. doi: 10.1016/j.bbagrm.2011.10.008. Epub 2011 Oct 22. Biochim Biophys Acta. 2012. PMID: 22044624 Review.
-
Alterations in bioenergetics due to changes in mitochondrial DNA copy number.Methods. 2010 Aug;51(4):452-7. doi: 10.1016/j.ymeth.2010.03.006. Epub 2010 Mar 25. Methods. 2010. PMID: 20347038 Review.
Cited by
-
Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19.Int J Mol Sci. 2022 Jul 23;23(15):8122. doi: 10.3390/ijms23158122. Int J Mol Sci. 2022. PMID: 35897696 Free PMC article. Review.
-
Mitochondrial function is impaired in long COVID patients.Ann Med. 2025 Dec;57(1):2528167. doi: 10.1080/07853890.2025.2528167. Epub 2025 Aug 12. Ann Med. 2025. PMID: 40792393 Free PMC article.
-
COVID-19 metabolism: Mechanisms and therapeutic targets.MedComm (2020). 2022 Aug 9;3(3):e157. doi: 10.1002/mco2.157. eCollection 2022 Sep. MedComm (2020). 2022. PMID: 35958432 Free PMC article. Review.
-
Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review.Front Immunol. 2025 Apr 17;16:1582783. doi: 10.3389/fimmu.2025.1582783. eCollection 2025. Front Immunol. 2025. PMID: 40313948 Free PMC article. Review.
-
COVID-19 and neurodegeneration: The mitochondrial connection.Aging Cell. 2022 Nov;21(11):e13727. doi: 10.1111/acel.13727. Epub 2022 Oct 11. Aging Cell. 2022. PMID: 36219531 Free PMC article.
References
-
- Al Amir Dache Z., Otandault A., Tanos R., Pastor B., Meddeb R., Sanchez C., Arena G., Lasorsa L., Bennett A., Grange T., et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB. 2020;34:3616–3630. - PubMed
-
- Ardail D., Lerme F., Puymirat J., Morel G. Evidence for the presence of alpha and beta-related T3 receptors in rat liver mitochondria. Eur. J. Cell Biol. 1993;62:105–113. - PubMed
-
- Ballestar E., Farber D.L., Glover S., Horwitz B., Meyer K., Nikolić M., Ordovas-Montanes J., Sims P., Shalek A., Vandamme N., et al. Single cell profiling of COVID-19 patients: an international data resource from multiple tissues. medrxiv. 2020 doi: 10.1101/2020.11.20.20227355. - DOI
-
- Bernardes J.P., Mishra N., Tran F., Bahmer T., Best L., Blase J.I., Bordoni D., Franzenburg J., Geisen U., Josephs-Spaulding J., et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity. 2020;53:1296–1314 e9. - PMC - PubMed
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous