Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 14;17(12):7886-7898.
doi: 10.1021/acs.jctc.1c00499. Epub 2021 Nov 23.

Multiscale Model for Quantitative Prediction of Insulin Aggregation Nucleation Kinetics

Affiliations

Multiscale Model for Quantitative Prediction of Insulin Aggregation Nucleation Kinetics

Rit Pratik Mishra et al. J Chem Theory Comput. .

Abstract

We combined kinetic, thermodynamic, and structural information from single-molecule (protein folding) and two-molecule (association) explicit-solvent simulations for determination of kinetic parameters in protein aggregation nucleation with insulin as the model protein. A structural bioinformatics approach was developed to account for heterogeneity of aggregation-prone species, with the transition complex theory found applicable in modeling association kinetics involving non-native species. Specifically, the kinetic pathway for formation of aggregation-prone oligomeric species was found to contain a structurally specific dominant binding mode, making the kinetic process similar to native protein association. The kinetic parameters thus obtained were used in a population balance model, and accurate predictions for aggregation nucleation time varying over 2 orders of magnitude with changes in either insulin concentration or an aggregation-inhibitor ligand concentration were obtained, while an empirical parameter set was not found to be transferable for prediction of ligand effects. Further, this physically determined kinetic parameter set provided several mechanistic insights, such as identification of the rate-limiting step in aggregation nucleation and a quantitative explanation for the switch from Arrhenius to non-Arrhenius aggregation kinetics around the melting temperature of insulin.

PubMed Disclaimer

LinkOut - more resources