Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;62(1):51-59.
doi: 10.1111/trf.16745. Epub 2021 Nov 23.

Complement-mediated hemolysis persists year round in patients with cold agglutinin disease

Affiliations

Complement-mediated hemolysis persists year round in patients with cold agglutinin disease

Alexander Röth et al. Transfusion. 2022 Jan.

Abstract

Background: Cold agglutinin disease (CAD) is a rare autoimmune hemolytic anemia mediated by immunoglobulin M autoantibodies that bind to the "I" antigen on erythrocytes. IgM binding results in either agglutination at ≤37°C, activation of the classical complement pathway, or both. Patients with CAD can have transient agglutination-mediated circulatory symptoms triggered by exposure to cold conditions. Separately, patients with CAD can experience complement-mediated symptoms such as anemia, hemolysis, and fatigue, but the effect of the season on these complement-mediated manifestations of CAD and clinical outcomes is not well understood.

Methods: Using data from the Optum® de-identified Electronic Health Record dataset, we compared hemoglobin, markers of hemolysis (bilirubin and lactate dehydrogenase [LDH]), and healthcare resource utilization (HRU) between seasons for 594 patients (62% female; 66% aged ≥65 years) with CAD (defined as having CAD-related terms in their clinical notes on ≥3 separate occasions between December 2008 and May 2016). Laboratory parameters and HRU were compared between seasons using multivariate regression models.

Results: Estimated median hemoglobin (9.87 g/dL in summer and 9.86 g/dL in winter; P = 0.944) and bilirubin (1.04 mg/dL in summer and 1.09 mg/dL in winter; P = 0.257) were similar in winter versus summer. While LDH was statistically significantly higher in winter compared with summer (P < 0.001), the estimated median value was above normal for both seasons (309 U/L in summer and 367 U/L in winter). HRU measures and transfusion and thromboembolism rates were similar across seasons.

Conclusions: Patients with CAD had evidence of persistent chronic hemolysis, HRU, and thromboembolism risk year round.

Keywords: anemia; epidemiology; immune hemolytic anemia; thrombosis.

PubMed Disclaimer

Comment in

References

REFERENCES

    1. Berentsen S, Barcellini W, D'Sa S, et al. Cold agglutinin disease revisited: a multinational, observational study of 232 patients. Blood. 2020;136(4):480-8.
    1. Bylsma LC, Gulbech Ording A, Rosenthal A, Öztürk B, Fryzek JP, Arias JM, et al. Occurrence, thromboembolic risk, and mortality in Danish patients with cold agglutinin disease. Blood Adv. 2019;3(20):2980-5.
    1. Berentsen S. Cold agglutinin disease. Hematol Am Soc Hematol Educ Prog. 2016;2016(1):226-31.
    1. Randen U, Trøen G, Tierens A, et al. Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica. 2014;99(3):497-504.
    1. Jäger U, Barcellini W, Broome CM, Gertz MA, Hill A, Hill QA, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: recommendations from the first international consensus meeting. Blood Rev. 2020;41:100648.

Publication types

LinkOut - more resources