Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep 13;18(6):7965-7978.
doi: 10.3934/mbe.2021395.

Optimization strategies of human mobility during the COVID-19 pandemic: A review

Affiliations
Free article
Review

Optimization strategies of human mobility during the COVID-19 pandemic: A review

Soumyajyoti Biswas et al. Math Biosci Eng. .
Free article

Abstract

The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives - cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though almost all the countries in the world in a short period of time. With humans as the carrier of the virus, the spreading process necessarily depends on the their mobility after being infected. Not only in the primary spreading process, but also in the subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed, by various countries both nationally and internationally. On the other hand, these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised on a global scale, with multiple changing variables. Here we review the techniques and their effects on optimization or proposed optimizations of human mobility in different scales, carried out by data driven, machine learning and model approaches.

Keywords: SIR model; epidemic model; machine learning; movement optimization.

PubMed Disclaimer