A Comparative Study of Functional Connectivity Measures for Brain Network Analysis in the Context of AD Detection with EEG
- PMID: 34828251
- PMCID: PMC8623641
- DOI: 10.3390/e23111553
A Comparative Study of Functional Connectivity Measures for Brain Network Analysis in the Context of AD Detection with EEG
Abstract
This work addresses brain network analysis considering different clinical severity stages of cognitive dysfunction, based on resting-state electroencephalography (EEG). We use a cohort acquired in real-life clinical conditions, which contains EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, and Alzheimer's disease (AD) patients. We propose to exploit an epoch-based entropy measure to quantify the connectivity links in the networks. This entropy measure relies on a refined statistical modeling of EEG signals with Hidden Markov Models, which allow a better estimation of the spatiotemporal characteristics of EEG signals. We also propose to conduct a comparative study by considering three other measures largely used in the literature: phase lag index, coherence, and mutual information. We calculated such measures at different frequency bands and computed different local graph parameters considering different proportional threshold values for a binary network analysis. After applying a feature selection procedure to determine the most relevant features for classification performance with a linear Support Vector Machine algorithm, our study demonstrates the effectiveness of the statistical entropy measure for analyzing the brain network in patients with different stages of cognitive dysfunction.
Keywords: AD detection; EEG signals; brain network; coherence; epoch-based entropy; graph theory; mild cognitive impairment; mutual information; phase lag index; subjective cognitive impairment.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Weighted Brain Network Analysis on Different Stages of Clinical Cognitive Decline.Bioengineering (Basel). 2022 Feb 4;9(2):62. doi: 10.3390/bioengineering9020062. Bioengineering (Basel). 2022. PMID: 35200415 Free PMC article.
-
Diagnosis of Alzheimer's disease with Electroencephalography in a differential framework.PLoS One. 2018 Mar 20;13(3):e0193607. doi: 10.1371/journal.pone.0193607. eCollection 2018. PLoS One. 2018. PMID: 29558517 Free PMC article.
-
Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism.Brain Connect. 2020 Dec;10(10):555-565. doi: 10.1089/brain.2020.0785. Epub 2020 Nov 23. Brain Connect. 2020. PMID: 33073602 Free PMC article.
-
Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms.Int J Psychophysiol. 2016 May;103:88-102. doi: 10.1016/j.ijpsycho.2015.02.008. Epub 2015 Feb 7. Int J Psychophysiol. 2016. PMID: 25660305 Review.
-
A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.J Neurosci Methods. 2019 Apr 1;317:121-140. doi: 10.1016/j.jneumeth.2018.12.012. Epub 2018 Dec 26. J Neurosci Methods. 2019. PMID: 30593787 Review.
Cited by
-
Is EEG Entropy a Useful Measure for Alzheimer's Disease?Actas Esp Psiquiatr. 2024 Jun;52(3):347-364. doi: 10.62641/aep.v52i3.1632. Actas Esp Psiquiatr. 2024. PMID: 38863047 Free PMC article. Review.
-
[The current applicating state of neural network-based electroencephalogram diagnosis of Alzheimer's disease].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1233-1239. doi: 10.7507/1001-5515.202201001. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022. PMID: 36575093 Free PMC article. Chinese.
-
Age-Related Modifications of Electroencephalogram Coherence in Mice Models of Alzheimer's Disease and Amyotrophic Lateral Sclerosis.Biomedicines. 2023 Apr 11;11(4):1151. doi: 10.3390/biomedicines11041151. Biomedicines. 2023. PMID: 37189768 Free PMC article.
-
Brain network analysis for the discrimination of dementia disorders using electrophysiology signals: A systematic review.Front Aging Neurosci. 2023 Mar 3;15:1039496. doi: 10.3389/fnagi.2023.1039496. eCollection 2023. Front Aging Neurosci. 2023. PMID: 36936496 Free PMC article.
-
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture.Entropy (Basel). 2022 Apr 29;24(5):631. doi: 10.3390/e24050631. Entropy (Basel). 2022. PMID: 35626516 Free PMC article.
References
-
- Babiloni C., Blinowska K., Bonanni L., Cichocki A., De Haan W., Del Percio C., Dubois B., Escudero J., Fernández A., Frisoni G., et al. What electrophysiology tells us about Alzheimer’s disease: A window into the synchronization and connectivity of brain neurons. Neurobiol. Aging. 2020;85:58–73. doi: 10.1016/j.neurobiolaging.2019.09.008. - DOI - PubMed
-
- Hampel H., Toschi N., Babiloni C., Baldacci F., Black K.L., Bokde A.L., Bun R.S., Cacciola F., Cavedo E., Chiesa P.A., et al. Alzheimer Precision Medicine Initiative (APMI). Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimers Dis. 2018;64:S47–S105. doi: 10.3233/JAD-179932. - DOI - PMC - PubMed
-
- Prince M.J., Wimo A., Guerchet M.M., Ali G.C., Wu Y.T., Prina M. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer’s Disease International; London, UK: 2015.
-
- Jessen F., Amariglio R.E., Van Boxtel M., Breteler M., Ceccaldi M., Chételat G., Dubois B., Dufouil C., Ellis K.A., van der Flier W.M., et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzh. Dement. 2014;10:844–852. doi: 10.1016/j.jalz.2014.01.001. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources