Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
- PMID: 34828360
- PMCID: PMC8626003
- DOI: 10.3390/genes12111754
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
Abstract
Amyotrophic lateral sclerosis (ALS) is a prototypical neurodegenerative disease characterized by progressive degeneration of motor neurons to severely effect the functionality to control voluntary muscle movement. Most of the non-additive genetic aberrations responsible for ALS make its molecular classification very challenging along with limited sample size, curse of dimensionality, class imbalance and noise in the data. Deep learning methods have been successful in many other related areas but have low minority class accuracy and suffer from the lack of explainability when used directly with RNA expression features for ALS molecular classification. In this paper, we propose a deep-learning-based molecular ALS classification and interpretation framework. Our framework is based on training a convolution neural network (CNN) on images obtained from converting RNA expression values into pixels based on DeepInsight similarity technique. Then, we employed Shapley additive explanations (SHAP) to extract pixels with higher relevance to ALS classifications. These pixels were mapped back to the genes which made them up. This enabled us to classify ALS samples with high accuracy for a minority class along with identifying genes that might be playing an important role in ALS molecular classifications. Taken together with RNA expression images classified with CNN, our preliminary analysis of the genes identified by SHAP interpretation demonstrate the value of utilizing Machine Learning to perform molecular classification of ALS and uncover disease-associated genes.
Keywords: ALS; classification; interpretation; machine learning; target identification.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning.Mol Med. 2023 Jan 24;29(1):12. doi: 10.1186/s10020-023-00603-y. Mol Med. 2023. PMID: 36694130 Free PMC article.
-
Evaluation of Vertical Ground Reaction Forces Pattern Visualization in Neurodegenerative Diseases Identification Using Deep Learning and Recurrence Plot Image Feature Extraction.Sensors (Basel). 2020 Jul 10;20(14):3857. doi: 10.3390/s20143857. Sensors (Basel). 2020. PMID: 32664354 Free PMC article.
-
Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype.Bioinformatics. 2019 Jul 15;35(14):i538-i547. doi: 10.1093/bioinformatics/btz369. Bioinformatics. 2019. PMID: 31510706 Free PMC article.
-
Is it accurate to classify ALS as a neuromuscular disorder?Expert Rev Neurother. 2020 Sep;20(9):895-906. doi: 10.1080/14737175.2020.1806061. Epub 2020 Sep 1. Expert Rev Neurother. 2020. PMID: 32749157 Review.
-
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449. Curr Med Imaging. 2020. PMID: 32484086 Review.
Cited by
-
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning.Mol Med. 2023 Jan 24;29(1):12. doi: 10.1186/s10020-023-00603-y. Mol Med. 2023. PMID: 36694130 Free PMC article.
-
Enhanced analysis of tabular data through Multi-representation DeepInsight.Sci Rep. 2024 Jun 4;14(1):12851. doi: 10.1038/s41598-024-63630-7. Sci Rep. 2024. PMID: 38834670 Free PMC article.
-
Machine Learning Framework for Ovarian Cancer Diagnostics Using Plasma Lipidomics and Metabolomics.Int J Mol Sci. 2025 Jul 10;26(14):6630. doi: 10.3390/ijms26146630. Int J Mol Sci. 2025. PMID: 40724878 Free PMC article.
-
Amyotrophic lateral sclerosis diagnosis using machine learning and multi-omic data integration.Heliyon. 2024 Oct 1;10(20):e38583. doi: 10.1016/j.heliyon.2024.e38583. eCollection 2024 Oct 30. Heliyon. 2024. PMID: 39640633 Free PMC article.
-
Explainable artificial intelligence for omics data: a systematic mapping study.Brief Bioinform. 2023 Nov 22;25(1):bbad453. doi: 10.1093/bib/bbad453. Brief Bioinform. 2023. PMID: 38113073 Free PMC article. Review.
References
-
- Yin B., Balvert M., van der Spek R.A., Dutilh B.E., Bohté S., Veldink J., Schönhuth A. Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype. Bioinformatics. 2019;35:i538–i547. doi: 10.1093/bioinformatics/btz369. - DOI - PMC - PubMed
-
- Amyotrophic Lateral Sclerosis (ALS) Fact Sheet | National Institute of Neurological Disorders and Stroke. [(accessed on 15 February 2021)]; Available online: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-She....
-
- Van Rheenen W., Shatunov A., Dekker A.M., McLaughlin R.L., Diekstra F.P., Pulit S.L., Van Der Spek R.A., Võsa U., De Jong S., Robinson M.R., et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 2016;48:1043–1048. doi: 10.1038/ng.3622. - DOI - PMC - PubMed
-
- Arloth J., Eraslan G., Andlauer T.F., Martins J., Iurato S., Kühnel B., Waldenberger M., Frank J., Gold R., Hemmer B., et al. DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLoS Comput. Biol. 2020;16:e1007616. doi: 10.1371/journal.pcbi.1007616. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous