Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 1;12(11):1756.
doi: 10.3390/genes12111756.

The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools

Affiliations
Review

The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools

Jakub Lach et al. Genes (Basel). .

Abstract

Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.

Keywords: biodiversity; bioinformatics; biomolecules; genome mining; halophiles; hypersaline environments; metagenomics.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflict of interest.

References

    1. Ma Y., Galinski E.A., Grant W.D., Oren A., Ventosa A. Halophiles 2010: Life in Saline Environments. Appl. Environ. Microbiol. 2010;76:6971–6981. doi: 10.1128/AEM.01868-10. - DOI - PMC - PubMed
    1. Oren A. Extremophiles Handbook. Extrem. Handb. 2011;31:1–26. doi: 10.1007/978-4-431-53898-1. - DOI
    1. Andrei A.-S., Banciu H.L., Oren A. Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 2012;330:1–9. doi: 10.1111/j.1574-6968.2012.02526.x. - DOI - PubMed
    1. DasSarma S., DasSarma P. Halophiles. eLS. 2017:1–13. doi: 10.1002/9780470015902.a0000394.pub4. - DOI
    1. Ventosa A., Arahal D.R. Extremophiles. CRC Press; Boca Raton, FL, USA: 2009. Physico-chemical characteristics of hypersaline environments and their biodiversity.

Publication types

Substances

LinkOut - more resources