Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 27;255(1):3.
doi: 10.1007/s00425-021-03733-x.

Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L

Affiliations

Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L

Hao Chen et al. Planta. .

Abstract

A total of 278 BnWRKYs were identified and analyzed. Ectopic expression of BnWRKY149 and BnWRKY217 suggests that they function in the ABA signaling pathway. WRKY transcription factors play an important role in plant development, however, their function in Brassica napus L. abiotic stress response is still unclear. In this study, a total of 278 BnWRKY transcription factors were identified from the B. napus genome data, and they were subsequently distributed in three main groups. The protein motifs and classification of BnWRKY transcription factors were analyzed, and the locations of their corresponding encoding genes were mapped on the chromosomes of B. napus. Transcriptome analysis of rapeseed seedlings exposed to drought, salt, heat, cold and abscisic acid treatment revealed that 99 BnWRKYs responded to at least one of these stresses. The expression profiles of 12 BnWRKYs were examined with qPCR and the result coincided with RNA-seq analysis. Two genes of interest, BnWRKY149 and BnWRKY217 (homologs of AtWRKY40), were overexpressed in Arabidopsis, and the corresponding proteins were located to the nucleus. Transgene plants of BnWRKY149 and BnWRKY217 were less sensitive to ABA than Arabidopsis Col-0 plants, suggesting they might play important roles in the responses of rapeseed to abiotic stress.

Keywords: ABA; BnWRKY; Paralogues; RNA-seq; Transcriptional activation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ahmad R, Liu Y, Wang TJ, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Xu ZY (2019) GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol 179:1844–1860. https://doi.org/10.1104/pp.18.01466 - DOI - PubMed - PMC
    1. Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2021) Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci 11:619417. https://doi.org/10.3389/fpls.2020.619417 - DOI - PubMed - PMC
    1. Ali MA, Azeem F, Nawaz MA, Acet T, Abbas A, Imran QM, Shah KH, Rehman HM, Chung G, Yang SH, Bohlmann H (2018) Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J Plant Physiol 226:12–21. https://doi.org/10.1016/j.jplph.2018.04.007 - DOI - PubMed
    1. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983. https://doi.org/10.1038/415977a - DOI - PubMed
    1. Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41:9764–9778. https://doi.org/10.1093/nar/gkt732 - DOI - PubMed - PMC

MeSH terms

LinkOut - more resources