Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar;44(3):251-257.
doi: 10.1007/s13258-021-01187-9. Epub 2021 Nov 27.

Prospects and challenges of epigenomics in crop improvement

Affiliations
Review

Prospects and challenges of epigenomics in crop improvement

Yuhong Huang et al. Genes Genomics. 2022 Mar.

Abstract

Background: The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield.

Objective: In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected.

Methods: We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement.

Conclusion: In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.

Keywords: Crop improvement; Epigenomics; Maize; Rice; Wheat.

PubMed Disclaimer

Similar articles

  • Epigenomics: Technologies and Applications.
    Wang KC, Chang HY. Wang KC, et al. Circ Res. 2018 Apr 27;122(9):1191-1199. doi: 10.1161/CIRCRESAHA.118.310998. Circ Res. 2018. PMID: 29700067 Free PMC article. Review.
  • Epigenome guided crop improvement: current progress and future opportunities.
    Zhang Y, Andrews H, Eglitis-Sexton J, Godwin I, Tanurdžić M, Crisp PA. Zhang Y, et al. Emerg Top Life Sci. 2022 Apr 15;6(2):141-151. doi: 10.1042/ETLS20210258. Emerg Top Life Sci. 2022. PMID: 35072210 Free PMC article. Review.
  • Understanding epigenomics based on the rice model.
    Lu Y, Zhou DX, Zhao Y. Lu Y, et al. Theor Appl Genet. 2020 May;133(5):1345-1363. doi: 10.1007/s00122-019-03518-7. Epub 2020 Jan 2. Theor Appl Genet. 2020. PMID: 31897514 Review.
  • Plant synthetic epigenomic engineering for crop improvement.
    Yang L, Zhang P, Wang Y, Hu G, Guo W, Gu X, Pu L. Yang L, et al. Sci China Life Sci. 2022 Nov;65(11):2191-2204. doi: 10.1007/s11427-021-2131-6. Epub 2022 Jul 15. Sci China Life Sci. 2022. PMID: 35851940 Review.
  • Epigenetics in the modern era of crop improvements.
    Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Xue Y, et al. Sci China Life Sci. 2025 Jun;68(6):1570-1609. doi: 10.1007/s11427-024-2784-3. Epub 2025 Jan 8. Sci China Life Sci. 2025. PMID: 39808224 Review.

Cited by

References

    1. Baum BR, Feldman M (2010) Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum. Genome 53:430–438 - PubMed
    1. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920 - PubMed
    1. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.21-21.29.29
    1. Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, Domenichini S, Rodriguez NY, Granados S, Kim T, Blein et al (2020) Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 21:104 - PubMed - PMC
    1. Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW et al (2016) Integrating DNA methylation and hene expression data in the development of the soybean-bradyrhizobium N2-fixing symbiosis. Front Microbiol 7:518 - PubMed - PMC

Publication types