The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review
- PMID: 34838908
- DOI: 10.1016/j.scitotenv.2021.151926
The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review
Abstract
Emerging pollutants (EPs) create a worldwide concern owing to their low concentration and severe toxicity to the receptors. The prominent emerging pollutants categories as pharmaceutical and personal care product, plasticizer, surfactants, and persistent organic pollutants. Typically, EPs are widely disseminated in the aquatic ecosystem and capable of perturbing the physiology of water bodies as well as humans. The primary sources of EPs in the environment include anthropogenic release, atmospheric deposition, untreated or substandard treated wastewater, and extreme weather events. Intensive research has been done covering the environmental distribution, ecological disturbance, fate, and removal of EPs in the past decades. However, a systematic review on the distribution of EPs in the engineered and natural aquatic environment and the degradation of different EPs by using anaerobic sludge, aerobic bacteria, and isolated strains are limited. This review article aims to highlight the importance, application, and future perceptions of using different microbes to degrade EPs. Overall, this review article illustrates the superiority of using non-cultivable and cultivable microbes to degrade the EPs as an eco-friendly approach. Practically, the outcomes of this review paper will build up the knowledge base solutions to remove EPs from the wastewater.
Keywords: Aerobic sludge; Anaerobic sludge; Degradation; Emerging pollutants; Environmental distribution; Genetically modified bacteria.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
