Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 1;78(Suppl 6):S3-S12.
doi: 10.1097/FJC.0000000000001087.

Endothelium-Dependent Hyperpolarization: The Evolution of Myoendothelial Microdomains

Affiliations
Review

Endothelium-Dependent Hyperpolarization: The Evolution of Myoendothelial Microdomains

Christopher J Garland et al. J Cardiovasc Pharmacol. .

Abstract

Endothelium-derived hyperpolarizing factor (EDHF) was envisaged as a chemical entity causing vasodilation by hyperpolarizing vascular smooth muscle (VSM) cells and distinct from nitric oxide (NO) ([aka endothelium-derived relaxing factor (EDRF)]) and prostacyclin. The search for an identity for EDHF unraveled the complexity of signaling within small arteries. Hyperpolarization originates within endothelial cells (ECs), spreading to the VSM by 2 branches, 1 chemical and 1 electrical, with the relative contribution varying with artery location, branch order, and prevailing profile of VSM activation. Chemical signals vary likewise and can involve potassium ion, lipid mediators, and hydrogen peroxide, whereas electrical signaling depends on physical contacts formed by homocellular and heterocellular (myoendothelial; MEJ) gap junctions, both able to conduct hyperpolarizing current. The discovery that chemical and electrical signals each arise within ECs resulted in an evolution of the single EDHF concept into the more inclusive, EDH signaling. Recognition of the importance of MEJs and particularly the fact they can support bidirectional signaling also informed the discovery that Ca2+ signals can pass from VSM to ECs during vasoconstriction. This signaling activates negative feedback mediated by NO and EDH forming a myoendothelial feedback circuit, which may also be responsible for basal or constitutive release of NO and EDH activity. The MEJs are housed in endothelial projections, and another spin-off from investigating EDH signaling was the discovery these fine structures contain clusters of signaling proteins to regulate both hyperpolarization and NO release. So, these tiny membrane bridges serve as a signaling superhighway or infobahn, which controls vasoreactivity by responding to signals flowing back and forth between the endothelium and VSM. By allowing bidirectional signaling, MEJs enable sinusoidal vasomotion, co-ordinated cycles of widespread vasoconstriction/vasodilation that optimize time-averaged blood flow. Cardiovascular disease disrupts EC signaling and as a result vasomotion changes to vasospasm.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest.

Similar articles

Cited by

References

    1. Hill CE. Tudor Griffith, gap junctions and conducted vasodilatation: electromechanical coupling back in the limelight. J Cardiovasc Pharmacol. 2013;61:93–101.
    1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376.
    1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526.
    1. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9269.
    1. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988;93:515–524.

MeSH terms

Substances

LinkOut - more resources