Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction
- PMID: 34843227
- PMCID: PMC8717630
- DOI: 10.1021/acsnano.1c08636
Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction
Abstract
The research on two-dimensional colloidal semiconductors has received a boost from the emergence of ultrathin lead halide perovskite nanoplatelets. While the optical properties of these materials have been widely investigated, their accurate structural and compositional characterization is still challenging. Here, we exploited the natural tendency of the platelets to stack into highly ordered films, which can be treated as single crystals made of alternating layers of organic ligands and inorganic nanoplatelets, to investigate their structure by multilayer diffraction. Using X-ray diffraction alone, this method allowed us to reveal the structure of ∼12 Å thick Cs-Pb-Br perovskite and ∼25 Å thick Cs-Pb-I-Cl Ruddlesden-Popper nanoplatelets by precisely measuring their thickness, stoichiometry, surface passivation type and coverage, as well as deviations from the crystal structures of the corresponding bulk materials. It is noteworthy that a single, readily available experimental technique, coupled with proper modeling, provides access to such detailed structural and compositional information.
Keywords: Ruddlesden−Popper; X-ray; lead halide perovskite; multilayer diffraction; nanoplatelet; structure; surface.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



References
-
- Sichert J. A.; Tong Y.; Mutz N.; Vollmer M.; Fischer S.; Milowska K. Z.; García Cortadella R.; Nickel B.; Cardenas-Daw C.; Stolarczyk J. K.; Urban A. S.; Feldmann J. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15, 6521–6527. 10.1021/acs.nanolett.5b02985. - DOI - PubMed
-
- Weidman M. C.; Goodman A. J.; Tisdale W. A. Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chem. Mater. 2017, 29, 5019–5030. 10.1021/acs.chemmater.7b01384. - DOI
-
- Akkerman Q. A.; Motti S. G.; Srimath Kandada A. R.; Mosconi E.; D’Innocenzo V.; Bertoni G.; Marras S.; Kamino B. A.; Miranda L.; De Angelis F.; Petrozza A.; Prato M.; Manna L. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J. Am. Chem. Soc. 2016, 138, 1010–1016. 10.1021/jacs.5b12124. - DOI - PMC - PubMed
-
- Gao F.; Yang W.; Liu X.; Li Y.; Liu W.; Xu H.; Liu Y. Highly Stable and Luminescent Silica-Coated Perovskite Quantum Dots at Nanoscale-Particle Level via Nonpolar Solvent Synthesis. Chem. Eng. J. 2021, 407, 128001.10.1016/j.cej.2020.128001. - DOI
-
- Jagielski J.; Solari S. F.; Jordan L.; Scullion D.; Blülle B.; Li Y. T.; Krumeich F.; Chiu Y. C.; Ruhstaller B.; Santos E. J. G.; Shih C. J. Scalable Photonic Sources Using Two-Dimensional Lead Halide Perovskite Superlattices. Nat. Commun. 2020, 11, 1–9. 10.1038/s41467-019-14084-3. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources