Experimental observation of roton-like dispersion relations in metamaterials
- PMID: 34851658
- PMCID: PMC8635434
- DOI: 10.1126/sciadv.abm2189
Experimental observation of roton-like dispersion relations in metamaterials
Abstract
Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One experiment uses transverse elastic waves in microscale metamaterials at ultrasound frequencies. The other experiment uses longitudinal air-pressure waves in macroscopic channel–based metamaterials at audible frequencies. In both experiments, we identify the roton-like minimum in the dispersion relation that is associated to a triplet of waves at a given frequency. Our work shows that designed interactions in metamaterials beyond the nearest neighbors open unprecedented experimental opportunities to tailor the lowest dispersion branch—while most previous metamaterial studies have concentrated on shaping higher dispersion branches.
Figures




Similar articles
-
Roton-like acoustical dispersion relations in 3D metamaterials.Nat Commun. 2021 Jun 2;12(1):3278. doi: 10.1038/s41467-021-23574-2. Nat Commun. 2021. PMID: 34078904 Free PMC article.
-
Electronic rotons and Wigner crystallites in a two-dimensional dipole liquid.Nature. 2024 Oct;634(8035):813-817. doi: 10.1038/s41586-024-08045-0. Epub 2024 Oct 16. Nature. 2024. PMID: 39415018
-
Roton-roton crossover in strongly correlated dipolar Bose-Einstein condensates.Phys Rev Lett. 2011 Aug 5;107(6):065303. doi: 10.1103/PhysRevLett.107.065303. Epub 2011 Aug 4. Phys Rev Lett. 2011. PMID: 21902337
-
Recent advances in topological elastic metamaterials.J Phys Condens Matter. 2021 Oct 5;33(50). doi: 10.1088/1361-648X/ac27d8. J Phys Condens Matter. 2021. PMID: 34534976 Review.
-
Metamaterials for Enhanced Optical Responses and their Application to Active Control of Terahertz Waves.Adv Mater. 2020 Sep;32(35):e2000250. doi: 10.1002/adma.202000250. Epub 2020 Mar 18. Adv Mater. 2020. PMID: 32187763 Review.
Cited by
-
Local-to-non-local transition laws for stiffness-tuneable monoatomic chains preserving springs mass.Philos Trans A Math Phys Eng Sci. 2024 Sep 23;382(2279):20240037. doi: 10.1098/rsta.2024.0037. Epub 2024 Aug 12. Philos Trans A Math Phys Eng Sci. 2024. PMID: 39129404 Free PMC article.
-
Anomalous frozen evanescent phonons.Nat Commun. 2024 Oct 24;15(1):8882. doi: 10.1038/s41467-024-52956-5. Nat Commun. 2024. PMID: 39448565 Free PMC article.
-
Current developments in elastic and acoustic metamaterials science.Philos Trans A Math Phys Eng Sci. 2024 Sep 23;382(2279):20240038. doi: 10.1098/rsta.2024.0038. Epub 2024 Aug 12. Philos Trans A Math Phys Eng Sci. 2024. PMID: 39129405 Free PMC article.
-
Brillouin Light Scattering Characterisation of Gray Tone 3D Printed Isotropic Materials.Materials (Basel). 2022 Jun 8;15(12):4070. doi: 10.3390/ma15124070. Materials (Basel). 2022. PMID: 35744130 Free PMC article.
-
Nonlocal Conduction in a Metawire.Adv Mater. 2025 Apr;37(13):e2415278. doi: 10.1002/adma.202415278. Epub 2025 Feb 21. Adv Mater. 2025. PMID: 39981896 Free PMC article.
References
-
- Landau L., Theory of the superfluidity of helium II. Phys. Rev. 60, 356–358 (1941).
-
- Feynman R. P., Atomic theory of the two-fluid model of liquid helium. Phys. Rev. 94, 262–277 (1954).
-
- Feynman R. P., Atomic theory of liquid helium near absolute zero. Phys. Rev. 91, 1301–1308 (1953).
-
- Henshaw D. G., Woods A. D. B., Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. Lett. 121, 1266–1274 (1961).
-
- A. Griffin, G. Allan, Excitations in a Bose-Condensed Liquid (Cambridge Univ. Press, 1993).
LinkOut - more resources
Full Text Sources