Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct-Dec:126-127:1-16.
doi: 10.1016/j.pnmrs.2021.05.003. Epub 2021 Jun 1.

Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization

Affiliations
Free article
Review

Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization

Asif Equbal et al. Prog Nucl Magn Reson Spectrosc. 2021 Oct-Dec.
Free article

Abstract

Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.

Keywords: Cross effect; EPR; Landau-Zener; MAS DNP; Microwave; Quantum mechanical simulation; Radical-development; Thermal mixing.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources